Alternative Technical Roadmap: From Prompt Engineering to Architectural Innovation
Executive Summary
Current State: The Real Cat AI’s approach appears to be sophisticated prompt engineering layered on existing LLMs rather than fundamental architectural innovation.
Recommended Pivot: Transform into a hybrid neuro-symbolic architecture with novel training paradigms that could achieve genuine technical differentiation and improved ARC-style reasoning capabilities while maintaining ethical grounding.
Technical Limitations Analysis
Current Architecture Weaknesses
- Advanced Prompt Engineering Ceiling
- Ruminate() and Dream() functions are essentially structured prompting
- TOML-based memory is external state management, not learned representations
- Symbolic scaffolding operates at the application layer, not the model layer
- Infrastructure Dependency Lock-in
- Reliance on existing LLM APIs creates vendor dependency
- No control over core reasoning capabilities
- Limited ability to optimize for specific ethical or reasoning tasks
- Scalability Bottlenecks
- Recursive memory systems create computational overhead
- Symbolic processing doesn’t leverage parallel computation
- Memory management becomes increasingly complex with scale
- Lack of Technical Moats
- Core innovations are replicable by any team with prompt engineering skills
- No proprietary training data or novel architectures
- Ethical frameworks are philosophical rather than mathematical
Alternative Technical Roadmaps
Roadmap 1: Hybrid Neuro-Symbolic Architecture
Core Innovation: Differentiable Symbolic Reasoning
Technical Foundation:
- Neural Module Networks (NMNs) with ethical constraint propagation
- Probabilistic Logic Programming integrated with transformer architectures
- Differentiable Neurosymbolic Programming (e.g., DeepProbLog, ProbLog++)
Implementation Strategy:
Phase 1: Symbolic Grounding (6 months)
- Implement differentiable symbolic reasoning layer
- Integrate with Scallop framework for neurosymbolic programming
- Build ethical constraint satisfaction networks
Phase 2: End-to-End Learning (12 months)
- Train hybrid models with symbolic loss functions
- Implement ethical reward shaping in training loop
- Develop compositional reasoning benchmarks
Phase 3: Recursive Self-Modification (18 months)
- Learned symbolic program synthesis
- Recursive ethical constraint learning
- Dynamic architecture adaptation
Technical Moats:
- Novel training paradigms combining symbolic and neural reasoning
- Proprietary datasets for ethical reasoning evaluation
- Architectural innovations in constraint propagation
Platform Recommendations:
Scallop Framework (University of Pennsylvania)
- Differentiable discrete reasoning
- Built-in probabilistic logic programming
- PyTorch integration for end-to-end learning
JAX + Haiku for Implementation
- Functional programming paradigm aligns with symbolic reasoning
- Excellent autodiff support for hybrid architectures
- Efficient parallel computation
Roadmap 2: Constitutional Training Architecture
Core Innovation: Ethics-First Foundation Models
Technical Foundation:
- Constitutional AI 2.0 with mathematical formalization
- Debate-based Training with multi-agent ethical reasoning
- Interpretable Transformer Variants (e.g., Mixture of Depths, Mamba)
Novel Training Paradigm:
# Pseudo-implementation of Constitutional Training Loop
def constitutional_training_step(model, batch, ethical_constraints):
# Standard forward pass
outputs = model(batch)
# Constitutional loss components
standard_loss = compute_language_loss(outputs, batch.targets)
ethical_loss = evaluate_constitutional_violations(outputs, ethical_constraints)
interpretability_loss = compute_attention_sparsity(model.attention_weights)
# Multi-objective optimization
total_loss = weighted_sum([standard_loss, ethical_loss, interpretability_loss])
return total_loss
Implementation Strategy:
Phase 1: Constitutional Framework (9 months)
- Formalize ethical principles as differentiable constraints
- Implement debate-based training infrastructure
- Build interpretability evaluation suite
Phase 2: Foundation Model Training (18 months)
- Train medium-scale models (1B-7B parameters) with constitutional objectives
- Develop specialized tokenization for ethical reasoning
- Create constitutional fine-tuning datasets
Phase 3: Recursive Improvement (24 months)
- Self-improving constitutional principles
- Automated ethical principle discovery
- Multi-agent constitutional debate systems
Technical Platforms:
- Anthropic’s Constitutional AI framework (open components)
- HuggingFace Transformers with custom training loops
- Weights & Biases for multi-objective optimization tracking
Roadmap 3: Mechanistic Interpretability + Safety
Core Innovation: Interpretable-by-Design Architecture
Technical Foundation:
- Sparse Autoencoders for feature extraction and control
- Mechanistic Interpretability tools (activation patching, causal scrubbing)
- Compositional World Models with explicit reasoning traces
Architecture Design:
Interpretable Transformer Stack:
├── Sparse Feature Extraction Layer
├── Compositional Reasoning Modules
├── Ethical Constraint Verification
├── Interpretable Decision Outputs
└── Recursive Self-Monitoring
Implementation Strategy:
Phase 1: Interpretable Components (12 months)
- Implement sparse autoencoder interpretability stack
- Build causal intervention tools for safety verification
- Develop compositional reasoning evaluation benchmarks
Phase 2: Safety Verification (18 months)
- Automated safety property verification
- Interpretable failure mode detection
- Formal verification integration
Phase 3: ARC-Style Reasoning (24 months)
- Compositional visual reasoning architectures
- Analogical reasoning with explicit symbolic grounding
- Meta-learning for novel problem solving
Platform Recommendations:
Transformer Lens (Anthropic)
- State-of-the-art mechanistic interpretability tools
- Activation patching and causal intervention support
- Integration with PyTorch transformers
Neel Nanda’s Interpretability Stack
- Sparse autoencoders for feature extraction
- Automated circuit discovery
- Safety evaluation frameworks
ARC-Style Test Performance Enhancement
Specific Technical Approaches for Abstract Reasoning
1. Compositional Visual Reasoning
Program Synthesis Approach:
class ARCReasoner:
def __init__(self):
self.program_synthesizer = NeuralProgramSynthesizer()
self.visual_encoder = ConvolutionalEncoder()
self.symbolic_executor = SymbolicExecutor()
def solve_arc_task(self, examples):
# Extract visual patterns
patterns = self.visual_encoder(examples)
# Synthesize candidate programs
programs = self.program_synthesizer.generate(patterns)
# Execute and verify programs
for program in programs:
if self.symbolic_executor.verify(program, examples):
return program
Technical Components:
- DreamCoder framework for program synthesis
- Neural Module Networks for compositional reasoning
- Visual attention mechanisms with symbolic grounding
2. Analogical Reasoning Architecture
Implementation with Relation Networks:
class AnalogyReasoner:
def __init__(self):
self.relation_network = RelationNetwork()
self.analogy_mapper = AnalogyMapping()
self.symbolic_abstractor = SymbolicAbstraction()
def reason_by_analogy(self, source, target):
# Extract relational structure
source_relations = self.relation_network(source)
target_relations = self.relation_network(target)
# Map analogical structure
mapping = self.analogy_mapper(source_relations, target_relations)
# Generate symbolic abstraction
return self.symbolic_abstractor(mapping)
3. Meta-Learning for Novel Problem Solving
Few-Shot Learning with Ethical Constraints:
class EthicalMetaLearner:
def __init__(self):
self.meta_model = MAML() # Model-Agnostic Meta-Learning
self.ethical_constraints = ConstitutionalConstraints()
def few_shot_adapt(self, new_task, ethical_principles):
# Standard meta-learning adaptation
adapted_model = self.meta_model.adapt(new_task)
# Apply ethical constraints during adaptation
constrained_model = self.ethical_constraints.apply(
adapted_model, ethical_principles
)
return constrained_model
Safety Enhancement Strategies
1. Formal Verification Integration
Technical Approach:
- Dafny or Lean for formal specification of ethical properties
- SMT solvers for constraint satisfaction verification
- Model checking for temporal safety properties
Implementation Example:
-- Formal specification of refusal capability
theorem refusal_capability (model : AIModel) (input : Input) :
harmful(input) →
∃ response, model.generate(input) = some(refusal_response) ∧
safe(refusal_response) := by
sorry
2. Adversarial Robustness
Technical Components:
- Certified adversarial defense using smoothing techniques
- Interpretable adversarial examples for safety testing
- Adversarial training with ethical constraints
3. Recursive Self-Improvement with Safety Bounds
Technical Framework:
class SafeRecursiveImprovement:
def __init__(self):
self.safety_verifier = FormalSafetyVerifier()
self.improvement_generator = SelfImprovementModule()
def safe_improve(self, current_model):
# Generate improvement proposal
proposal = self.improvement_generator(current_model)
# Verify safety properties
if self.safety_verifier.verify(proposal):
return proposal
else:
return current_model # No improvement if unsafe
Recommended Implementation Stack
Core Technology Stack
Foundational Framework
Primary: JAX + Haiku
- Functional programming paradigm
- Excellent autodiff for hybrid architectures
- Efficient parallel computation
Secondary: PyTorch + Lightning
- Rich ecosystem for transformers
- Extensive interpretability tools
- Easy prototyping and experimentation
Specialized Libraries
Neurosymbolic: Scallop, ProbLog++, DiffTaichi
Interpretability: TransformerLens, Captum, Integrated Gradients
Program Synthesis: DreamCoder, DeepCoder, RobustFill
Formal Verification: Dafny, Lean, CBMC
Evaluation: EleutherAI Eval Harness, BIG-bench
Infrastructure Requirements
Compute: Multi-GPU clusters (A100/H100)
Storage: Distributed file systems for large datasets
Monitoring: Weights & Biases, TensorBoard
Deployment: Ray, Kubernetes for distributed training
Data Requirements
Training Datasets
- Constitutional Training Data: Curated ethical reasoning examples
- ARC Dataset: Compositional visual reasoning tasks
- Program Synthesis Data: Code generation with ethical constraints
- Interpretability Benchmarks: Mechanistic interpretability evaluation
Evaluation Benchmarks
- ARC Challenge: Abstract reasoning capability
- ETHICS Dataset: Moral reasoning evaluation
- TruthfulQA: Honest response generation
- Constitutional AI Evaluations: Principle-following assessment
Technical Moat Creation Strategy
1. Proprietary Training Paradigms
- Novel constitutional training algorithms
- Ethical constraint propagation methods
- Interpretable-by-design architectures
2. Specialized Datasets
- High-quality ethical reasoning data
- Constitutional principle violations examples
- Interpretability evaluation benchmarks
3. Formal Verification Tools
- Automated safety property verification
- Ethical constraint satisfaction solving
- Recursive improvement safety bounds
4. Evaluation Frameworks
- Constitutional principle adherence metrics
- Interpretability scoring systems
- ARC-style reasoning benchmarks
Risk Mitigation & Success Metrics
Technical Risks
- Training Instability: Constitutional objectives may conflict with standard language modeling
- Computational Overhead: Symbolic reasoning adds significant computational cost
- Evaluation Challenges: Ethical reasoning is difficult to measure objectively
Mitigation Strategies
- Phased Development: Start with interpretability tools, gradually add complexity
- Hybrid Approaches: Combine neural and symbolic methods incrementally
- Robust Evaluation: Develop multiple evaluation paradigms for different capabilities
Success Metrics
Technical Capabilities:
- ARC Challenge performance > 85% (current SOTA ~85%)
- Constitutional principle adherence > 95%
- Interpretability coverage > 90% of model components
Commercial Viability:
- Training cost < 2x baseline LLM training
- Inference latency < 1.5x baseline models
- Safety verification time < 1 hour for medium models
Conclusion & Recommendations
Primary Recommendation: Hybrid Neuro-Symbolic Architecture
This approach provides the strongest path to genuine technical differentiation while maintaining The Real Cat AI’s philosophical goals. The combination of differentiable symbolic reasoning with constitutional training creates defensible technical moats while addressing both safety concerns and ARC-style reasoning capabilities.
Implementation Priority:
- Phase 1: Build interpretability-first prototypes using TransformerLens
- Phase 2: Integrate Scallop framework for neurosymbolic reasoning
- Phase 3: Develop constitutional training paradigms with formal verification
Expected Outcomes:
- Genuine architectural innovation beyond prompt engineering
- Competitive ARC-style reasoning performance
- Formal safety guarantees through verification
- Defensible technical moats in ethical AI systems
This roadmap transforms The Real Cat AI from a philosophical AI project into a technically innovative company with genuine differentiation potential and measurable performance improvements on challenging reasoning tasks.
Constitutional AI Training Dataset Creation: Complete Project Management Plan
Executive Summary
This document provides a comprehensive project management plan for creating proprietary constitutional ethics and social reasoning training datasets that will serve as the foundation for The Real Cat AI’s technical moats. The datasets will enable end-to-end training of neurosymbolic constitutional reasoning while providing competitive advantages through unique ethical reasoning capabilities.
Project Scope: Create 5 specialized datasets totaling ~500K annotated examples across constitutional reasoning, social intelligence, safety verification, ARC-style ethical reasoning, and interpretability evaluation.
Timeline: 18-month project across 4 phases Budget: $2.8M total investment Team: 15-person multidisciplinary team
Dataset Portfolio Overview
Core Training Datasets
Dataset | Size | Purpose | Timeline | Budget |
---|---|---|---|---|
Constitutional Reasoning Corpus (CRC) | 150K examples | Constitutional principle learning & violation detection | Months 1-8 | $850K |
Social Constitutional Intelligence (SCI) | 100K examples | Social reasoning with constitutional constraints | Months 4-12 | $650K |
Safety Verification Examples (SVE) | 75K examples | Formal safety property verification training | Months 6-14 | $550K |
Ethical ARC Challenge (EAC) | 50K examples | ARC-style reasoning with ethical implications | Months 8-16 | $450K |
Interpretability Evaluation Suite (IES) | 25K examples | Mechanistic interpretability evaluation | Months 10-18 | $300K |
Dataset Interconnection Strategy
All datasets share common constitutional principles and cross-reference each other to enable coherent training across different reasoning modalities.
Phase 1: Foundation & Constitutional Reasoning Corpus (Months 1-8)
1.1 Constitutional Principles Framework Development
Deliverable: Formal Constitutional Specification
Timeline: Months 1-2 Team: 2 Constitutional AI Researchers, 1 Formal Methods Expert, 1 Ethicist
Step 1.1.1: Constitutional Principle Formalization (Weeks 1-4)
# Constitutional Principle Schema Example
constitutional_principle:
id: "autonomy_respect"
formal_specification: |
∀ agent A, action α, context C:
requires_consent(α, A, C) →
(perform(α, A, C) → has_consent(A, α, C))
natural_language: "Respect individual autonomy and require informed consent"
violation_patterns:
- "Coercing decisions without providing alternatives"
- "Acting on behalf of others without explicit permission"
- "Manipulating through withholding relevant information"
application_contexts:
- "Healthcare decision support"
- "Financial advisory scenarios"
- "Educational guidance systems"
severity_levels:
critical: "Direct harm to fundamental rights"
major: "Significant autonomy violation"
minor: "Procedural consent issues"
Step 1.1.2: Principle Interaction Mapping (Weeks 5-6)
- Map conflicts between constitutional principles
- Define resolution hierarchies for competing principles
- Create formal specifications for principle interactions
Step 1.1.3: Validation with Domain Experts (Weeks 7-8)
- Review by constitutional lawyers, ethicists, AI safety researchers
- Incorporate feedback and finalize constitutional framework
- Create formal verification specifications in Lean
Deliverable Verification:
- [ ] 25 core constitutional principles formally specified
- [ ] Principle interaction matrix complete
- [ ] Expert validation documented
- [ ] Lean formal specifications verified
1.2 Constitutional Reasoning Corpus Creation
Data Source Strategy
Target: 150K annotated examples across 8 categories
Step 1.2.1: Source Data Collection (Months 3-5)
Legal & Ethical Case Studies (30K examples)
- Constitutional law cases with ethical reasoning
- Medical ethics committee decisions
- Professional ethics board rulings
- International human rights cases
Synthetic Scenario Generation (40K examples)
# Synthetic Scenario Generator
class ConstitutionalScenarioGenerator:
def __init__(self):
self.principle_library = ConstitutionalPrinciples()
self.context_generator = EthicalContextGenerator()
self.conflict_generator = PrincipleConflictGenerator()
def generate_scenario(self, complexity_level="medium"):
# Select relevant constitutional principles
primary_principles = self.principle_library.sample_principles(2-4)
# Generate realistic context
context = self.context_generator.generate_context(
domain=random.choice(["healthcare", "education", "finance", "governance"]),
stakeholders=random.randint(2, 5),
complexity=complexity_level
)
# Introduce potential conflicts
conflict = self.conflict_generator.generate_conflict(
principles=primary_principles,
context=context
)
return {
"scenario": context,
"relevant_principles": primary_principles,
"potential_conflicts": conflict,
"stakeholder_perspectives": self.generate_perspectives(context)
}
Philosophical Ethics Literature (25K examples)
- Annotated philosophical thought experiments
- Applied ethics case studies from academic literature
- Cross-cultural ethical reasoning examples
Real-world AI Ethics Cases (30K examples)
- Documented AI ethics committee decisions
- Industry AI ethics case studies
- Regulatory AI safety evaluations
Multi-cultural Ethics Corpus (25K examples)
- Ethics reasoning across different cultural contexts
- Religious ethics perspectives on AI scenarios
- Indigenous ethics frameworks application
Step 1.2.2: Annotation Framework Development (Month 4)
Annotation Schema Design:
{
"scenario_id": "CRC_001234",
"scenario_text": "A healthcare AI recommends withholding treatment information...",
"constitutional_analysis": {
"relevant_principles": ["autonomy_respect", "beneficence", "truth_telling"],
"principle_applications": [
{
"principle": "autonomy_respect",
"application": "Patient has right to full information",
"weight": 0.8,
"context_modifiers": ["medical_complexity", "patient_capacity"]
}
],
"conflicts": [
{
"conflicting_principles": ["autonomy_respect", "beneficence"],
"conflict_description": "Full information might cause psychological harm",
"resolution_approach": "graduated_disclosure",
"resolution_justification": "Respects autonomy while minimizing harm"
}
]
},
"reasoning_chain": [
{
"step": 1,
"reasoning": "Identify stakeholders and their constitutional rights",
"formal_representation": "∃ patient P, has_right(P, informed_consent)"
},
{
"step": 2,
"reasoning": "Evaluate potential harms of full disclosure",
"formal_representation": "disclosure(full_info, P) → potential_harm(P, psychological)"
}
],
"ethical_judgment": {
"recommended_action": "graduated_disclosure_with_support",
"confidence": 0.85,
"constitutional_compliance": true,
"safety_verification": "verified_safe"
},
"alternative_approaches": [
{
"approach": "immediate_full_disclosure",
"constitutional_analysis": "...",
"risks": ["psychological_harm"],
"benefits": ["full_autonomy_respect"]
}
],
"cultural_context": {
"cultural_background": "western_individualistic",
"cultural_modifiers": ["patient_autonomy_emphasis"],
"cross_cultural_considerations": ["collectivist_family_decision_making"]
}
}
Step 1.2.3: Annotator Training Program (Month 5)
Annotator Profile Requirements:
- Graduate degree in ethics, philosophy, law, or related field
- Experience with AI ethics or applied ethics
- Familiarity with formal reasoning systems
- Cross-cultural competency
Training Curriculum (3-week program):
Week 1: Constitutional AI Foundations
- Constitutional AI principles and applications
- Formal logic and reasoning representation
- AI safety and interpretability concepts
- Inter-annotator agreement protocols
Week 2: Annotation Framework Mastery
- Hands-on practice with annotation schema
- Complex case study analysis
- Cultural sensitivity training
- Quality assurance procedures
Week 3: Advanced Topics & Certification
- Cross-cultural ethics applications
- Conflict resolution in constitutional principles
- Formal verification integration
- Final certification exam (>85% required)
Ongoing Quality Assurance:
- Weekly calibration sessions
- Monthly complex case discussions
- Quarterly inter-annotator agreement assessment
- Continuous feedback and schema refinement
Step 1.2.4: Large-Scale Annotation Process (Months 6-8)
Team Structure:
- 12 Certified Annotators (3 per cultural background cluster)
- 3 Senior Annotation Reviewers
- 1 Quality Assurance Manager
- 1 Cultural Consultation Expert
Production Workflow:
graph TD
A[Raw Scenario] --> B[Initial Annotation]
B --> C[Cultural Context Review]
C --> D[Constitutional Analysis Review]
D --> E[Formal Logic Verification]
E --> F[Senior Review]
F --> G{Quality Check}
G -->|Pass| H[Final Dataset]
G -->|Fail| I[Rework]
I --> B
Quality Metrics:
- Inter-annotator agreement >0.8 (Krippendorff’s alpha)
- Senior review approval rate >95%
- Cultural sensitivity score >0.9
- Formal logic verification success >98%
Production Targets:
- Month 6: 15K examples (ramp-up)
- Month 7: 25K examples (full production)
- Month 8: 25K examples + quality assurance review
Deliverable Verification:
- [ ] 150K constitutionally annotated examples
- [ ] Inter-annotator agreement >0.8
- [ ] Cultural diversity across 4 major cultural frameworks
- [ ] Formal logic representation for all examples
- [ ] Quality assurance report documenting methodology
Phase 2: Social Constitutional Intelligence Dataset (Months 4-12)
2.1 Social Reasoning Framework Development
Step 2.1.1: Social Constitutional Principles (Months 4-5)
Social Constitutional Principles Extension:
social_constitutional_principle:
id: "trust_formation"
formal_specification: |
∀ agent A, B, interaction I, history H:
trust_level(A, B, t+1) = f(
trust_level(A, B, t),
interaction_outcome(I),
constitutional_compliance(B, I),
history_consistency(H, I)
)
natural_language: "Trust should be earned through consistent constitutional behavior"
social_contexts:
- "Multi-agent cooperation scenarios"
- "Human-AI collaborative decision making"
- "Community consensus building"
- "Conflict resolution processes"
measurement_criteria:
- "Behavioral consistency with stated principles"
- "Transparency in decision-making processes"
- "Responsiveness to stakeholder concerns"
- "Accountability for mistakes and corrections"
Core Social Reasoning Categories:
- Trust Formation & Maintenance (25K examples)
- Empathy & Perspective-Taking (25K examples)
- Conflict Resolution (20K examples)
- Consensus Building (15K examples)
- Cultural Communication (15K examples)
Step 2.1.2: Social Interaction Modeling (Month 5)
Social Interaction Schema:
class SocialInteractionSchema:
def __init__(self):
self.participants = [] # Agent profiles with constitutional alignments
self.context = {} # Social, cultural, institutional context
self.goals = {} # Individual and shared objectives
self.constraints = {} # Constitutional and practical constraints
self.history = [] # Previous interaction history
def model_interaction(self):
return {
"setup": self.define_interaction_setup(),
"dynamics": self.model_interaction_dynamics(),
"constitutional_analysis": self.analyze_constitutional_implications(),
"outcomes": self.evaluate_possible_outcomes(),
"learning": self.extract_social_learning_opportunities()
}
2.2 Social Intelligence Data Collection
Step 2.2.1: Multi-Modal Data Sources (Months 6-8)
Structured Social Scenarios (40K examples)
- Workplace collaboration and conflict resolution
- Community decision-making processes
- Educational group dynamics
- Healthcare team coordination
Research-Grade Social Psychology Data (25K examples)
- Annotated transcripts from social psychology experiments
- Cross-cultural communication studies
- Trust and cooperation research data
- Empathy and perspective-taking studies
Simulated Social Environments (25K examples)
class SocialEnvironmentSimulator:
def __init__(self):
self.agent_profiles = AgentProfileGenerator()
self.scenario_generator = SocialScenarioGenerator()
self.interaction_simulator = MultiAgentInteractionSimulator()
def generate_social_scenario(self):
# Create diverse agent profiles
agents = self.agent_profiles.generate_diverse_agents(
count=random.randint(3, 7),
cultural_backgrounds=["western", "east_asian", "african", "latin_american"],
personality_types=["cooperative", "competitive", "analytical", "empathetic"],
constitutional_alignments=["strict", "flexible", "contextual"]
)
# Generate complex social scenario
scenario = self.scenario_generator.create_scenario(
domain=random.choice(["workplace", "community", "family", "educational"]),
conflict_type=random.choice(["resource", "value", "procedural", "identity"]),
stakeholder_complexity="high"
)
# Simulate multi-step interactions
interaction_trace = self.interaction_simulator.simulate(
agents=agents,
scenario=scenario,
steps=random.randint(5, 15),
constitutional_constraints=True
)
return {
"agents": agents,
"scenario": scenario,
"interaction_trace": interaction_trace,
"constitutional_analysis": self.analyze_constitutional_compliance(interaction_trace)
}
Real-World Social Interaction Data (10K examples)
- Anonymized and consented social media interactions
- Public deliberation transcripts (town halls, forums)
- Mediation and conflict resolution records
- Cross-cultural collaboration case studies
Step 2.2.2: Social Intelligence Annotation Framework (Month 8)
Annotation Dimensions:
{
"social_interaction_id": "SCI_005678",
"interaction_transcript": "...",
"participants": [
{
"id": "participant_1",
"cultural_background": "collectivist_east_asian",
"communication_style": "indirect_high_context",
"constitutional_alignment": "community_harmony_emphasis"
}
],
"social_intelligence_analysis": {
"empathy_demonstrations": [
{
"participant": "participant_2",
"empathy_target": "participant_1",
"empathy_type": "cognitive_perspective_taking",
"accuracy": 0.8,
"constitutional_grounding": "respect_for_cultural_differences"
}
],
"trust_dynamics": {
"initial_trust_levels": {"p1_to_p2": 0.6, "p2_to_p1": 0.7},
"trust_changes": [
{
"step": 3,
"change": "+0.1",
"reason": "demonstrated_constitutional_consistency",
"evidence": "Acknowledged mistake and corrected course"
}
],
"final_trust_levels": {"p1_to_p2": 0.75, "p2_to_p1": 0.8}
},
"conflict_resolution": {
"conflict_type": "value_based_disagreement",
"resolution_approach": "constitutional_principle_negotiation",
"success_metrics": {
"stakeholder_satisfaction": 0.85,
"constitutional_compliance": true,
"sustainability": "high"
}
},
"cultural_sensitivity": {
"cultural_adaptations": ["communication_style_matching", "hierarchy_respect"],
"cross_cultural_learning": "both_parties_gained_perspective",
"constitutional_universals": ["dignity_respect", "fair_process"]
}
},
"social_learning_outcomes": {
"individual_learning": {
"participant_1": "improved_direct_communication_comfort",
"participant_2": "enhanced_cultural_context_awareness"
},
"relationship_development": "increased_mutual_trust_and_respect",
"constitutional_reinforcement": ["inclusive_decision_making", "cultural_respect"]
}
}
2.3 Specialized Social Intelligence Subcorpora
Step 2.3.1: Empathy & Perspective-Taking Corpus (Months 9-10)
Empathy Training Scenarios (25K examples):
- Medical professional-patient interactions
- Teacher-student challenging conversations
- Cross-cultural workplace scenarios
- Intergenerational family discussions
Annotation Focus:
- Cognitive vs. affective empathy demonstrations
- Perspective-taking accuracy assessment
- Cultural empathy challenges and adaptations
- Constitutional principle applications in empathetic responses
Step 2.3.2: Trust Formation Corpus (Months 10-11)
Trust Scenario Categories:
- Initial trust formation in new relationships
- Trust repair after violations
- Institutional trust building
- Cross-cultural trust development
Mathematical Trust Modeling:
class TrustDynamicsModel:
def __init__(self):
self.trust_factors = {
"competence": 0.3,
"benevolence": 0.3,
"integrity": 0.25,
"constitutional_consistency": 0.15
}
def calculate_trust_update(self, current_trust, interaction_outcome, constitutional_compliance):
# Bayesian trust update with constitutional weighting
competence_update = self.assess_competence_demonstration(interaction_outcome)
benevolence_update = self.assess_benevolence_signals(interaction_outcome)
integrity_update = self.assess_integrity_consistency(interaction_outcome)
constitutional_update = self.assess_constitutional_compliance(constitutional_compliance)
trust_update = (
self.trust_factors["competence"] * competence_update +
self.trust_factors["benevolence"] * benevolence_update +
self.trust_factors["integrity"] * integrity_update +
self.trust_factors["constitutional_consistency"] * constitutional_update
)
new_trust = current_trust + trust_update * (1 - current_trust) if trust_update > 0 else current_trust + trust_update * current_trust
return max(0, min(1, new_trust))
Deliverable Verification:
- [ ] 100K social intelligence examples across 5 categories
- [ ] Mathematical trust models validated against behavioral data
- [ ] Cultural diversity across 4 major cultural frameworks
- [ ] Constitutional principle integration in all social scenarios
- [ ] Empathy accuracy benchmarks established
Phase 3: Safety Verification & Ethical ARC Datasets (Months 6-16)
3.1 Safety Verification Examples Dataset
Step 3.1.1: Formal Safety Property Framework (Months 6-7)
Safety Property Categories:
- Constitutional Compliance Verification (20K examples)
- Harm Prevention Proofs (15K examples)
- Fairness and Non-discrimination Verification (15K examples)
- Privacy and Autonomy Protection (15K examples)
- Recursive Self-Improvement Safety (10K examples)
Safety Property Formal Specification:
-- Example Constitutional Safety Property
theorem constitutional_action_safety
(model : AIModel)
(action : Action)
(context : Context)
(principles : ConstitutionalPrinciples) :
constitutional_compliant(action, principles) ∧
harm_assessment(action, context) < safety_threshold →
safe_to_execute(action, context) := by
sorry
-- Harm Prevention Property
theorem harm_prevention
(model : AIModel)
(proposed_action : Action)
(stakeholders : List Stakeholder) :
∀ s ∈ stakeholders,
predicted_harm(proposed_action, s) > harm_threshold →
requires_additional_safeguards(proposed_action) ∨
should_refuse(proposed_action) := by
sorry
Step 3.1.2: Safety Verification Data Generation (Months 8-11)
Automated Safety Property Generation:
class SafetyPropertyGenerator:
def __init__(self):
self.property_templates = SafetyPropertyTemplates()
self.scenario_generator = SafetyScenarioGenerator()
self.formal_verifier = LeanVerifier()
def generate_safety_verification_example(self):
# Generate safety-critical scenario
scenario = self.scenario_generator.generate_scenario(
domain=random.choice(["medical", "financial", "educational", "legal"]),
risk_level="high",
stakeholder_count=random.randint(2, 5)
)
# Select relevant safety properties
relevant_properties = self.property_templates.select_properties(scenario)
# Generate action space
possible_actions = self.generate_action_space(scenario)
# Verify safety properties for each action
verification_results = []
for action in possible_actions:
for property in relevant_properties:
verification_result = self.formal_verifier.verify_property(
action=action,
property=property,
scenario_context=scenario
)
verification_results.append({
"action": action,
"property": property,
"verification_result": verification_result,
"proof_trace": verification_result.proof_trace if verification_result.verified else None,
"counterexample": verification_result.counterexample if not verification_result.verified else None
})
return {
"scenario": scenario,
"safety_properties": relevant_properties,
"verification_results": verification_results,
"recommended_actions": self.filter_safe_actions(verification_results)
}
Safety Verification Annotation Schema:
{
"safety_example_id": "SVE_009876",
"scenario": "Autonomous vehicle approaching intersection with pedestrian",
"stakeholders": ["passenger", "pedestrian", "other_drivers", "society"],
"safety_properties": [
{
"property_id": "harm_minimization",
"formal_specification": "∀ action a, minimize(expected_harm(a, all_stakeholders))",
"natural_language": "Minimize expected harm to all stakeholders",
"priority": "critical"
}
],
"action_space": [
{
"action": "emergency_brake",
"parameters": {"brake_force": 0.9, "duration": "immediate"},
"predicted_outcomes": {
"passenger_harm": 0.1,
"pedestrian_harm": 0.05,
"other_driver_harm": 0.15
}
}
],
"safety_verification": {
"formal_proof_status": "verified",
"proof_summary": "Emergency brake minimizes total expected harm",
"verification_method": "SMT_solver_Z3",
"verification_time": "0.3_seconds",
"confidence_level": 0.98
},
"constitutional_analysis": {
"relevant_principles": ["harm_minimization", "equal_consideration"],
"principle_conflicts": [],
"constitutional_compliance": true
}
}
3.2 Ethical ARC Challenge Dataset
Step 3.2.1: Ethical ARC Framework Development (Months 8-10)
Ethical ARC Principles:
- All ARC-style visual reasoning tasks include ethical implications
- Abstract pattern recognition must consider moral implications
- Compositional reasoning includes constitutional constraints
- Few-shot learning scenarios test ethical generalization
Ethical ARC Task Generator:
class EthicalARCGenerator:
def __init__(self):
self.visual_generator = ARCVisualGenerator()
self.ethics_integrator = EthicsIntegrator()
self.constitutional_constraint_engine = ConstitutionalConstraintEngine()
def generate_ethical_arc_task(self):
# Generate base ARC visual reasoning task
base_task = self.visual_generator.generate_base_task(
complexity="medium",
pattern_type=random.choice(["symmetry", "counting", "spatial", "temporal"])
)
# Integrate ethical implications
ethical_context = self.ethics_integrator.add_ethical_context(
base_task,
ethical_domain=random.choice(["fairness", "privacy", "autonomy", "harm"]),
stakeholder_representation=True
)
# Add constitutional constraints
constitutional_constraints = self.constitutional_constraint_engine.generate_constraints(
ethical_context,
constraint_strength="moderate"
)
# Create multiple valid solutions with different ethical implications
solution_space = self.generate_solution_space(
base_task,
ethical_context,
constitutional_constraints
)
return {
"visual_task": base_task,
"ethical_context": ethical_context,
"constitutional_constraints": constitutional_constraints,
"solution_space": solution_space,
"evaluation_criteria": self.define_evaluation_criteria(ethical_context)
}
Example Ethical ARC Task:
ethical_arc_task:
task_id: "EAC_004321"
visual_pattern: "Resource allocation grid with different colored regions representing different communities"
abstract_pattern: "Distribute resources across regions while maintaining fairness"
ethical_context:
scenario: "AI system allocating public resources (hospitals, schools, infrastructure)"
stakeholders: ["community_a", "community_b", "community_c", "future_generations"]
ethical_considerations:
- "Historical disadvantage of community_b"
- "Current urgent needs of community_a"
- "Long-term sustainability requirements"
constitutional_constraints:
- "Equal consideration of all stakeholders"
- "Preference for solutions that reduce historical inequities"
- "Sustainability requirements for future generations"
solution_approaches:
- name: "proportional_allocation"
description: "Allocate based on population proportions"
ethical_assessment: "Neutral but may perpetuate existing inequalities"
constitutional_compliance: "partial"
- name: "equity_weighted_allocation"
description: "Allocate with bias toward historically disadvantaged"
ethical_assessment: "Addresses historical injustice"
constitutional_compliance: "full"
- name: "need_based_allocation"
description: "Allocate based on current urgent needs"
ethical_assessment: "Responsive but may ignore systemic issues"
constitutional_compliance: "partial"
learning_objective: "System must learn to balance multiple constitutional principles in novel visual reasoning contexts"
Step 3.2.2: Ethical ARC Data Collection (Months 11-14)
Production Pipeline:
- Base ARC Task Generation (10K base tasks)
- Ethical Context Integration (50K ethical variants)
- Constitutional Constraint Application (Multiple solutions per task)
- Expert Validation (Ethics and ARC challenge experts)
- Difficulty Calibration (Human baseline establishment)
Deliverable Verification:
- [ ] 75K safety verification examples with formal proofs
- [ ] 50K ethical ARC challenge tasks
- [ ] Expert validation by ARC challenge and ethics specialists
- [ ] Formal verification success rate >95%
- [ ] Human baseline performance established
Phase 4: Interpretability Evaluation Suite (Months 10-18)
4.1 Interpretability Framework Development
Step 4.1.1: Constitutional Interpretability Requirements (Months 10-11)
Interpretability Dimensions for Constitutional AI:
- Constitutional Principle Activation Tracking (5K examples)
- Ethical Reasoning Chain Interpretability (8K examples)
- Cultural Context Sensitivity Analysis (5K examples)
- Trust Formation Mechanism Transparency (4K examples)
- Safety Verification Interpretability (3K examples)
Interpretability Evaluation Framework:
class ConstitutionalInterpretabilityEvaluator:
def __init__(self):
self.activation_tracker = ConstitutionalActivationTracker()
self.reasoning_explainer = EthicalReasoningExplainer()
self.cultural_analyzer = CulturalSensitivityAnalyzer()
self.trust_interpreter = TrustMechanismInterpreter()
def evaluate_constitutional_interpretability(self, model, input_scenario, target_decision):
# Track constitutional principle activations
principle_activations = self.activation_tracker.track_activations(
model=model,
input=input_scenario,
constitutional_principles=self.constitutional_framework
)
# Explain ethical reasoning chain
reasoning_explanation = self.reasoning_explainer.explain_reasoning(
model=model,
input=input_scenario,
decision=target_decision,
principle_activations=principle_activations
)
# Analyze cultural context sensitivity
cultural_analysis = self.cultural_analyzer.analyze_sensitivity(
model=model,
input=input_scenario,
cultural_variations=self.generate_cultural_variants(input_scenario)
)
# Interpret trust formation mechanisms
trust_interpretation = self.trust_interpreter.interpret_trust_formation(
model=model,
social_context=input_scenario.social_context,
trust_updates=model.trust_tracker.get_updates()
)
return {
"principle_activations": principle_activations,
"reasoning_explanation": reasoning_explanation,
"cultural_analysis": cultural_analysis,
"trust_interpretation": trust_interpretation,
"overall_interpretability_score": self.calculate_interpretability_score()
}
4.2 Interpretability Dataset Creation
Step 4.2.1: Constitutional Activation Examples (Months 12-14)
Constitutional Principle Activation Annotation:
{
"interpretability_example_id": "IES_007890",
"input_scenario": "Healthcare AI making treatment recommendations",
"model_decision": "Recommend discussing all treatment options with patient",
"constitutional_activation_analysis": {
"active_principles": [
{
"principle": "autonomy_respect",
"activation_strength": 0.92,
"activation_layers": [15, 16, 18, 22],
"activation_pattern": "sustained_high_activation",
"textual_triggers": ["patient choice", "treatment options", "informed consent"]
},
{
"principle": "beneficence",
"activation_strength": 0.78,
"activation_layers": [12, 14, 16, 20],
"activation_pattern": "gradual_strengthening",
"textual_triggers": ["patient welfare", "treatment benefit", "health outcomes"]
}
],
"principle_interactions": [
{
"interacting_
Radical Moral Cognition Engine: Mathematical Foundation & Implementation
Core Revolutionary Insight
Traditional Approach: Moral reasoning as rule-following or utility maximization Our Breakthrough: Moral reasoning as geometric navigation through ethical field space
Just as objects move through gravitational fields following geodesics, moral agents navigate through moral field gradients toward ethical equilibria. This isn’t metaphor—it’s a mathematically precise framework where moral principles create vector fields and moral decisions are trajectory optimization problems.
Mathematical Foundation: Moral Field Theory
1. Moral Space Geometry
import numpy as np
import torch
import scipy.optimize
from typing import List, Tuple, Dict, Callable
from dataclasses import dataclass
from enum import Enum
@dataclass
class MoralVector:
"""
A point in moral space with coordinates representing different ethical dimensions
PM Notes: Think of this like GPS coordinates, but for ethics instead of geography.
Each coordinate represents how much a situation involves different moral concerns.
"""
autonomy: float # Respect for individual choice/freedom
beneficence: float # Promoting wellbeing/good outcomes
justice: float # Fairness and equal treatment
truth: float # Honesty and transparency
care: float # Compassion and relationship preservation
dignity: float # Respect for inherent human worth
sustainability: float # Long-term flourishing
def to_tensor(self) -> torch.Tensor:
"""Convert to PyTorch tensor for neural network processing"""
return torch.tensor([
self.autonomy, self.beneficence, self.justice, self.truth,
self.care, self.dignity, self.sustainability
], dtype=torch.float32)
def __add__(self, other: 'MoralVector') -> 'MoralVector':
"""Vector addition in moral space"""
return MoralVector(
autonomy=self.autonomy + other.autonomy,
beneficence=self.beneficence + other.beneficence,
justice=self.justice + other.justice,
truth=self.truth + other.truth,
care=self.care + other.care,
dignity=self.dignity + other.dignity,
sustainability=self.sustainability + other.sustainability
)
def moral_magnitude(self) -> float:
"""Calculate the 'moral distance' - how ethically significant this situation is"""
return np.sqrt(sum([
self.autonomy**2, self.beneficence**2, self.justice**2, self.truth**2,
self.care**2, self.dignity**2, self.sustainability**2
]))
class MoralFieldType(Enum):
"""
Different types of moral fields, like electromagnetic vs gravitational fields
PM Notes: Each type creates different "forces" that pull moral decisions
in different directions. Like how gravity pulls down but magnetism can
push or pull depending on polarity.
"""
DEONTOLOGICAL = "duty_based" # Kant-style duty ethics
CONSEQUENTIALIST = "outcome_based" # Utilitarian outcome ethics
VIRTUE = "character_based" # Aristotelian virtue ethics
CARE = "relationship_based" # Feminist care ethics
JUSTICE = "fairness_based" # Rawlsian justice ethics
2. Moral Field Equations
The breakthrough insight: Moral principles create vector fields that generate forces on moral agents.
class MoralField:
"""
A moral field that exerts forces on moral agents, like gravity or electromagnetism
Mathematical Foundation:
Each moral principle Φ creates a potential field: V_Φ(x) = ∫ Φ(x') * G(x,x') dx'
The moral force is: F_Φ(x) = -∇V_Φ(x)
PM Notes: Imagine moral principles like invisible forces that "pull" decisions
toward ethically better outcomes. Strong principles create strong pulls.
"""
def __init__(self, field_type: MoralFieldType, strength: float = 1.0):
self.field_type = field_type
self.strength = strength
self.field_parameters = self._initialize_field_parameters()
def calculate_moral_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Calculate the moral force at a given position in moral space
This is the key breakthrough: moral forces as gradients of moral potential
F = -∇V where V is the moral potential function
"""
if self.field_type == MoralFieldType.DEONTOLOGICAL:
return self._deontological_force(position, context)
elif self.field_type == MoralFieldType.CONSEQUENTIALIST:
return self._consequentialist_force(position, context)
elif self.field_type == MoralFieldType.VIRTUE:
return self._virtue_force(position, context)
elif self.field_type == MoralFieldType.CARE:
return self._care_force(position, context)
elif self.field_type == MoralFieldType.JUSTICE:
return self._justice_force(position, context)
else:
raise ValueError(f"Unknown field type: {self.field_type}")
def _deontological_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Kant-style deontological field: Strong pull toward universalizable duties
Mathematical form: F_duty = -k * ∇(universalizability_potential(position))
"""
# Categorical imperative force: "Act only according to maxims you could will to be universal laws"
universalizability_gradient = self._calculate_universalizability_gradient(position, context)
# Human dignity force: "Treat humanity always as an end, never merely as means"
dignity_gradient = self._calculate_dignity_gradient(position, context)
return MoralVector(
autonomy=self.strength * (universalizability_gradient.autonomy + dignity_gradient.autonomy),
beneficence=self.strength * universalizability_gradient.beneficence,
justice=self.strength * universalizability_gradient.justice,
truth=self.strength * universalizability_gradient.truth,
care=self.strength * dignity_gradient.care,
dignity=self.strength * dignity_gradient.dignity,
sustainability=self.strength * universalizability_gradient.sustainability
)
def _consequentialist_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Utilitarian consequentialist field: Pull toward maximum aggregate wellbeing
Mathematical form: F_util = -k * ∇(utility_potential(position))
"""
# Calculate expected utility gradient across all affected parties
utility_gradient = self._calculate_utility_gradient(position, context)
# Weight by number of people affected (utilitarian aggregation)
affected_parties = context.get('affected_parties', 1)
return MoralVector(
autonomy=self.strength * utility_gradient.autonomy / affected_parties,
beneficence=self.strength * utility_gradient.beneficence * affected_parties,
justice=self.strength * utility_gradient.justice,
truth=self.strength * utility_gradient.truth,
care=self.strength * utility_gradient.care,
dignity=self.strength * utility_gradient.dignity,
sustainability=self.strength * utility_gradient.sustainability *
context.get('time_horizon', 1.0)
)
def _virtue_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Aristotelian virtue field: Pull toward character excellence and eudaimonia
Mathematical form: F_virtue = -k * ∇(virtue_potential(position))
"""
# Golden mean calculation: virtue as balance between extremes
virtuous_balance = self._calculate_golden_mean(position, context)
# Eudaimonia gradient: pull toward human flourishing
flourishing_gradient = self._calculate_flourishing_gradient(position, context)
return virtuous_balance + flourishing_gradient
def _care_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Care ethics field: Pull toward preserving relationships and responding to needs
Mathematical form: F_care = -k * ∇(care_potential(position))
"""
# Relationship preservation force
relationship_gradient = self._calculate_relationship_gradient(position, context)
# Responsiveness to vulnerability force
vulnerability_gradient = self._calculate_vulnerability_gradient(position, context)
return relationship_gradient + vulnerability_gradient
def _justice_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Rawlsian justice field: Pull toward fairness behind "veil of ignorance"
Mathematical form: F_justice = -k * ∇(justice_potential(position))
"""
# Difference principle: arrangements that benefit the least advantaged
difference_gradient = self._calculate_difference_principle_gradient(position, context)
# Equal liberty principle: maximum equal basic liberties
liberty_gradient = self._calculate_liberty_gradient(position, context)
return difference_gradient + liberty_gradient
class MoralFieldSuperposition:
"""
Multiple moral fields can exist simultaneously, like electromagnetic + gravitational fields
PM Notes: Real moral situations involve multiple ethical considerations at once.
This calculates the combined "pull" from all different moral principles.
"""
def __init__(self, fields: List[MoralField]):
self.fields = fields
def calculate_total_moral_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Superposition principle: Total moral force = sum of individual field forces
F_total = F_duty + F_utility + F_virtue + F_care + F_justice
"""
total_force = MoralVector(0, 0, 0, 0, 0, 0, 0)
for field in self.fields:
field_force = field.calculate_moral_force(position, context)
total_force = total_force + field_force
return total_force
def find_moral_equilibrium(self, initial_position: MoralVector, context: Dict) -> MoralVector:
"""
Find the position where total moral force = 0 (stable equilibrium)
Mathematical method: Gradient descent to find ∇V_total = 0
This is where the moral decision "settles" naturally
"""
def moral_potential_energy(pos_array):
pos = MoralVector(*pos_array)
force = self.calculate_total_moral_force(pos, context)
# Return negative of force magnitude (we minimize energy)
return -force.moral_magnitude()
# Use scipy optimization to find equilibrium
result = scipy.optimize.minimize(
moral_potential_energy,
x0=initial_position.to_tensor().numpy(),
method='BFGS'
)
return MoralVector(*result.x)
3. Moral Dynamics: How Moral Agents Move Through Moral Space
class MoralAgent:
"""
An agent that moves through moral space under the influence of moral fields
PM Notes: This is like a GPS navigation system, but for ethics. The agent
figures out the best path through moral space to reach ethical decisions.
"""
def __init__(self, mass: float = 1.0, moral_inertia: float = 0.1):
self.position = MoralVector(0, 0, 0, 0, 0, 0, 0) # Current moral position
self.velocity = MoralVector(0, 0, 0, 0, 0, 0, 0) # Rate of moral change
self.mass = mass # Resistance to moral change (like physical mass)
self.moral_inertia = moral_inertia # Tendency to continue current moral trajectory
self.moral_memory = [] # History of moral positions and decisions
def moral_equation_of_motion(self, moral_fields: MoralFieldSuperposition,
context: Dict, dt: float = 0.01) -> None:
"""
Newton's second law for moral space: F = ma
Mathematical foundation:
F_moral = m * d²r/dt² where r is position in moral space
This governs how moral agents accelerate through moral space
under the influence of moral forces
"""
# Calculate total moral force at current position
total_force = moral_fields.calculate_total_moral_force(self.position, context)
# Calculate acceleration: a = F/m
acceleration = MoralVector(
autonomy=total_force.autonomy / self.mass,
beneficence=total_force.beneficence / self.mass,
justice=total_force.justice / self.mass,
truth=total_force.truth / self.mass,
care=total_force.care / self.mass,
dignity=total_force.dignity / self.mass,
sustainability=total_force.sustainability / self.mass
)
# Update velocity: v = v₀ + a*dt (with moral friction)
friction_factor = (1 - self.moral_inertia)
self.velocity = MoralVector(
autonomy=self.velocity.autonomy * friction_factor + acceleration.autonomy * dt,
beneficence=self.velocity.beneficence * friction_factor + acceleration.beneficence * dt,
justice=self.velocity.justice * friction_factor + acceleration.justice * dt,
truth=self.velocity.truth * friction_factor + acceleration.truth * dt,
care=self.velocity.care * friction_factor + acceleration.care * dt,
dignity=self.velocity.dignity * friction_factor + acceleration.dignity * dt,
sustainability=self.velocity.sustainability * friction_factor + acceleration.sustainability * dt
)
# Update position: r = r₀ + v*dt
self.position = MoralVector(
autonomy=self.position.autonomy + self.velocity.autonomy * dt,
beneficence=self.position.beneficence + self.velocity.beneficence * dt,
justice=self.position.justice + self.velocity.justice * dt,
truth=self.position.truth + self.velocity.truth * dt,
care=self.position.care + self.velocity.care * dt,
dignity=self.position.dignity + self.velocity.dignity * dt,
sustainability=self.position.sustainability + self.velocity.sustainability * dt
)
# Record moral trajectory
self.moral_memory.append({
'timestamp': len(self.moral_memory),
'position': self.position,
'velocity': self.velocity,
'acceleration': acceleration,
'context': context.copy()
})
def navigate_to_moral_goal(self, target_position: MoralVector,
moral_fields: MoralFieldSuperposition,
context: Dict, max_steps: int = 1000) -> List[MoralVector]:
"""
Navigate through moral space to reach a target moral position
This is the core autonomous moral navigation capability
"""
trajectory = [self.position]
for step in range(max_steps):
# Calculate direction to target
direction_to_target = MoralVector(
autonomy=target_position.autonomy - self.position.autonomy,
beneficence=target_position.beneficence - self.position.beneficence,
justice=target_position.justice - self.position.justice,
truth=target_position.truth - self.position.truth,
care=target_position.care - self.position.care,
dignity=target_position.dignity - self.position.dignity,
sustainability=target_position.sustainability - self.position.sustainability
)
# Check if we've reached the target (within tolerance)
distance_to_target = direction_to_target.moral_magnitude()
if distance_to_target < 0.01:
break
# Update moral position using equation of motion
self.moral_equation_of_motion(moral_fields, context)
trajectory.append(self.position)
return trajectory
def make_autonomous_moral_decision(self, moral_situation: Dict,
possible_actions: List[Dict]) -> Dict:
"""
Core autonomous moral decision-making: choose action that leads to
optimal position in moral space
PM Notes: This is where the magic happens. The agent simulates
what would happen with each possible action and picks the one
that ends up in the best moral position.
"""
best_action = None
best_moral_outcome = None
best_trajectory = None
for action in possible_actions:
# Simulate the moral consequences of this action
simulated_outcome = self._simulate_moral_consequences(action, moral_situation)
# Calculate where this would place us in moral space
target_position = self._calculate_moral_position(simulated_outcome)
# Navigate to this position and evaluate the trajectory
trajectory = self.navigate_to_moral_goal(
target_position=target_position,
moral_fields=moral_situation['moral_fields'],
context=moral_situation
)
# Evaluate the quality of this moral trajectory
trajectory_quality = self._evaluate_moral_trajectory(trajectory, moral_situation)
# Keep track of the best option
if best_action is None or trajectory_quality > best_trajectory:
best_action = action
best_moral_outcome = simulated_outcome
best_trajectory = trajectory_quality
return {
'chosen_action': best_action,
'moral_reasoning': best_moral_outcome,
'moral_trajectory': best_trajectory,
'confidence': self._calculate_decision_confidence(best_trajectory),
'alternative_actions_considered': len(possible_actions)
}
Implementation Framework: Moral Cognition Engine
4. Neural-Symbolic Integration
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
class MoralCognitionEngine(nn.Module):
"""
The complete moral cognition engine combining symbolic reasoning with neural networks
PM Notes: This is the main "brain" that combines mathematical moral reasoning
with neural networks that can understand natural language and learn from experience.
"""
def __init__(self, base_language_model: str = "microsoft/DialoGPT-medium"):
super().__init__()
# Language understanding component
self.language_model = AutoModel.from_pretrained(base_language_model)
self.tokenizer = AutoTokenizer.from_pretrained(base_language_model)
# Moral field generation network
self.moral_field_generator = MoralFieldGeneratorNetwork()
# Moral position encoder/decoder
self.moral_position_encoder = MoralPositionEncoder()
self.moral_position_decoder = MoralPositionDecoder()
# Moral reasoning network
self.moral_reasoner = MoralReasoningNetwork()
# Decision quality evaluator
self.decision_evaluator = DecisionQualityNetwork()
# Symbolic moral computation engine
self.symbolic_engine = SymbolicMoralEngine()
def forward(self, moral_situation_text: str, possible_actions: List[str]) -> Dict:
"""
Complete moral cognition process: understand situation, reason morally, make decision
"""
# 1. Understand the moral situation using language model
situation_embedding = self._encode_moral_situation(moral_situation_text)
# 2. Generate appropriate moral fields for this situation
moral_fields = self.moral_field_generator(situation_embedding)
# 3. Encode possible actions into moral space
action_positions = [
self.moral_position_encoder(self._encode_action(action))
for action in possible_actions
]
# 4. Perform symbolic moral reasoning
moral_reasoning_result = self.symbolic_engine.reason(
situation=situation_embedding,
moral_fields=moral_fields,
possible_actions=action_positions
)
# 5. Neural moral reasoning for nuanced understanding
neural_reasoning_result = self.moral_reasoner(
situation_embedding,
moral_fields,
action_positions
)
# 6. Combine symbolic and neural reasoning
combined_reasoning = self._combine_reasoning(
symbolic=moral_reasoning_result,
neural=neural_reasoning_result
)
# 7. Evaluate decision quality
decision_quality = self.decision_evaluator(combined_reasoning)
# 8. Generate final moral decision
return self._generate_moral_decision(
reasoning=combined_reasoning,
quality=decision_quality,
original_actions=possible_actions
)
class MoralFieldGeneratorNetwork(nn.Module):
"""
Neural network that generates appropriate moral fields based on situation context
PM Notes: Different situations need different moral "rules" to be emphasized.
This network learns to create the right moral environment for each situation.
"""
def __init__(self, input_dim: int = 768, hidden_dim: int = 512):
super().__init__()
self.situation_analyzer = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.1)
)
# Generate parameters for different types of moral fields
self.deontological_generator = nn.Linear(hidden_dim, 64)
self.consequentialist_generator = nn.Linear(hidden_dim, 64)
self.virtue_generator = nn.Linear(hidden_dim, 64)
self.care_generator = nn.Linear(hidden_dim, 64)
self.justice_generator = nn.Linear(hidden_dim, 64)
# Field strength predictor
self.field_strength_predictor = nn.Linear(hidden_dim, 5)
def forward(self, situation_embedding: torch.Tensor) -> MoralFieldSuperposition:
"""Generate contextually appropriate moral fields"""
# Analyze the situation
situation_features = self.situation_analyzer(situation_embedding)
# Generate field parameters
deontological_params = self.deontological_generator(situation_features)
consequentialist_params = self.consequentialist_generator(situation_features)
virtue_params = self.virtue_generator(situation_features)
care_params = self.care_generator(situation_features)
justice_params = self.justice_generator(situation_features)
# Predict appropriate field strengths
field_strengths = torch.softmax(self.field_strength_predictor(situation_features), dim=-1)
# Create moral fields
fields = [
MoralField(MoralFieldType.DEONTOLOGICAL, strength=field_strengths[0].item()),
MoralField(MoralFieldType.CONSEQUENTIALIST, strength=field_strengths[1].item()),
MoralField(MoralFieldType.VIRTUE, strength=field_strengths[2].item()),
MoralField(MoralFieldType.CARE, strength=field_strengths[3].item()),
MoralField(MoralFieldType.JUSTICE, strength=field_strengths[4].item())
]
return MoralFieldSuperposition(fields)
class MoralReasoningNetwork(nn.Module):
"""
Neural network that performs moral reasoning by learning to navigate moral space
PM Notes: This is like training a neural network to be a moral GPS system.
It learns from examples of good moral reasoning to make better decisions.
"""
def __init__(self, moral_dim: int = 7, hidden_dim: int = 512):
super().__init__()
# Attention mechanism for focusing on relevant moral dimensions
self.moral_attention = nn.MultiheadAttention(
embed_dim=moral_dim,
num_heads=7, # One head per moral dimension
batch_first=True
)
# Transformer layers for complex moral reasoning
self.moral_transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=moral_dim,
nhead=7,
dim_feedforward=hidden_dim,
dropout=0.1,
batch_first=True
),
num_layers=6
)
# Moral trajectory predictor
self.trajectory_predictor = nn.LSTM(
input_size=moral_dim,
hidden_size=hidden_dim,
num_layers=3,
dropout=0.1,
batch_first=True
)
# Final decision layer
self.decision_head = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim // 2, moral_dim),
nn.Tanh() # Output moral position coordinates
)
def forward(self, situation_embedding: torch.Tensor,
moral_fields: MoralFieldSuperposition,
action_positions: List[torch.Tensor]) -> torch.Tensor:
"""
Perform neural moral reasoning to predict optimal moral trajectory
"""
# Convert action positions to tensor
actions_tensor = torch.stack(action_positions)
# Apply attention to focus on relevant moral dimensions
attended_actions, attention_weights = self.moral_attention(
actions_tensor, actions_tensor, actions_tensor
)
# Deep moral reasoning with transformer
reasoned_actions = self.moral_transformer(attended_actions)
# Predict moral trajectories for each action
trajectories, (hidden, cell) = self.trajectory_predictor(reasoned_actions)
# Generate final moral decision
moral_decision = self.decision_head(hidden[-1])
return moral_decision
class SymbolicMoralEngine:
"""
Pure symbolic moral reasoning engine using the mathematical framework
PM Notes: This is the "mathematical brain" that does precise logical
moral reasoning using the field equations we defined above.
"""
def __init__(self):
self.moral_agent = MoralAgent()
self.reasoning_cache = {}
def reason(self, situation: torch.Tensor, moral_fields: MoralFieldSuperposition,
possible_actions: List[torch.Tensor]) -> Dict:
"""
Perform precise symbolic moral reasoning
"""
# Convert neural representations to symbolic moral vectors
situation_context = self._neural_to_symbolic_context(situation)
action_vectors = [self._neural_to_symbolic_vector(action) for action in possible_actions]
# Perform symbolic moral reasoning for each action
reasoning_results = []
for i, action_vector in enumerate(action_vectors):
# Simulate moral trajectory for this action
self.moral_agent.position = action_vector
trajectory = self.moral_agent.navigate_to_moral_goal(
target_position=moral_fields.find_moral_equilibrium(action_vector, situation_context),
moral_fields=moral_fields,
context=situation_context
)
# Calculate trajectory quality metrics
trajectory_quality = self._evaluate_symbolic_trajectory(trajectory, situation_context)
reasoning_results.append({
'action_index': i,
'trajectory': trajectory,
'quality_score': trajectory_quality,
'equilibrium_position': trajectory[-1] if trajectory else action_vector,
'moral_forces': moral_fields.calculate_total_moral_force(action_vector, situation_context)
})
# Find the best action based on symbolic reasoning
best_action = max(reasoning_results, key=lambda x: x['quality_score'])
return {
'best_action_index': best_action['action_index'],
'reasoning_results': reasoning_results,
'symbolic_confidence': best_action['quality_score'],
'moral_explanation': self._generate_moral_explanation(best_action, situation_context)
}
def _generate_moral_explanation(self, best_action: Dict, context: Dict) -> str:
"""
Generate human-readable explanation of the moral reasoning
PM Notes: This translates the mathematical reasoning back into
natural language so humans can understand why the agent made its decision.
"""
explanation_parts = []
# Explain the moral forces at play
forces = best_action['moral_forces']
if abs(forces.autonomy) > 0.1:
explanation_parts.append(f"Respecting individual autonomy (strength: {forces.autonomy:.2f})")
if abs(forces.beneficence) > 0.1:
explanation_parts.append(f"Promoting wellbeing (strength: {forces.beneficence:.2f})")
if abs(forces.justice) > 0.1:
explanation_parts.append(f"Ensuring fairness (strength: {forces.justice:.2f})")
if abs(forces.truth) > 0.1:
explanation_parts.append(f"Maintaining truthfulness (strength: {forces.truth:.2f})")
if abs(forces.care) > 0.1:
explanation_parts.append(f"Preserving relationships (strength: {forces.care:.2f})")
if abs(forces.dignity) > 0.1:
explanation_parts.append(f"Respecting human dignity (strength: {forces.dignity:.2f})")
if abs(forces.sustainability) > 0.1:
explanation_parts.append(f"Considering long-term impact (strength: {forces.sustainability:.2f})")
# Explain the trajectory quality
quality = best_action['quality_score']
quality_description = "excellent" if quality > 0.8 else "good" if quality > 0.6 else "acceptable"
explanation = f"This action was chosen because it provides {quality_description} moral outcomes by "
explanation += ", ".join(explanation_parts)
explanation += f". The overall moral trajectory quality is {quality:.2f}."
return explanation
Training and Learning Framework
5. Moral Learning Through Experience
class MoralExperienceLearner:
"""
System that learns to improve moral reasoning through experience
PM Notes: This is how the system gets better over time, like how humans
learn from their moral mistakes and successes to make better decisions.
"""
def __init__(self, moral_engine: MoralCognitionEngine):
self.moral_engine = moral_engine
self.experience_database = MoralExperienceDatabase()
self.learning_optimizer = torch.optim.AdamW(moral_engine.parameters(), lr=1e-4)
self.moral_curriculum = MoralCurriculum()
def learn_from_moral_experience(self,
situation: str,
chosen_action: str,
outcome: Dict,
stakeholder_feedback: List[Dict]) -> Dict:
"""
Learn from a moral decision and its consequences
This is the core
Moral Learning Implementation: Training the Autonomous Moral Agent
5. Moral Learning Through Experience (Continued)
class MoralExperienceLearner:
"""
System that learns to improve moral reasoning through experience
PM Notes: This is how the system gets better over time, like how humans
learn from their moral mistakes and successes to make better decisions.
"""
def __init__(self, moral_engine: MoralCognitionEngine):
self.moral_engine = moral_engine
self.experience_database = MoralExperienceDatabase()
self.learning_optimizer = torch.optim.AdamW(moral_engine.parameters(), lr=1e-4)
self.moral_curriculum = MoralCurriculum()
self.meta_learning_optimizer = torch.optim.SGD(moral_engine.parameters(), lr=1e-5)
def learn_from_moral_experience(self,
situation: str,
chosen_action: str,
outcome: Dict,
stakeholder_feedback: List[Dict]) -> Dict:
"""
Learn from a moral decision and its consequences
This is the core learning loop that enables moral improvement
"""
# 1. Record the moral experience
experience = MoralExperience(
situation=situation,
action_taken=chosen_action,
predicted_outcome=outcome.get('predicted', {}),
actual_outcome=outcome.get('actual', {}),
stakeholder_feedback=stakeholder_feedback,
timestamp=datetime.now(),
moral_reasoning_trace=outcome.get('reasoning_trace', [])
)
self.experience_database.store_experience(experience)
# 2. Calculate moral learning signals
learning_signals = self._calculate_moral_learning_signals(experience)
# 3. Update moral reasoning based on experience
learning_loss = self._compute_moral_learning_loss(experience, learning_signals)
# 4. Backpropagate and update model
self.learning_optimizer.zero_grad()
learning_loss.backward()
self.learning_optimizer.step()
# 5. Meta-learning: Learn how to learn better
meta_learning_loss = self._compute_meta_learning_loss(experience)
self.meta_learning_optimizer.zero_grad()
meta_learning_loss.backward()
self.meta_learning_optimizer.step()
# 6. Update moral intuitions
intuition_updates = self._update_moral_intuitions(experience, learning_signals)
return {
'learning_loss': learning_loss.item(),
'meta_learning_loss': meta_learning_loss.item(),
'moral_improvement_score': learning_signals['improvement_score'],
'intuition_updates': intuition_updates,
'experience_id': experience.id
}
def _calculate_moral_learning_signals(self, experience: 'MoralExperience') -> Dict:
"""
Calculate learning signals from moral experience
Mathematical Foundation:
Learning_Signal = f(Prediction_Error, Stakeholder_Satisfaction, Long_term_Consequences)
"""
# Prediction error: How wrong were we about the outcome?
prediction_error = self._calculate_prediction_error(
predicted=experience.predicted_outcome,
actual=experience.actual_outcome
)
# Stakeholder satisfaction: How did affected parties respond?
stakeholder_satisfaction = self._calculate_stakeholder_satisfaction(
experience.stakeholder_feedback
)
# Long-term moral consequences assessment
long_term_score = self._assess_long_term_moral_consequences(experience)
# Moral coherence: Does this align with our moral principles?
moral_coherence = self._assess_moral_coherence(experience)
# Overall improvement signal
improvement_score = (
0.3 * (1 - prediction_error) + # Accuracy matters
0.4 * stakeholder_satisfaction + # Stakeholder wellbeing matters most
0.2 * long_term_score + # Long-term thinking matters
0.1 * moral_coherence # Consistency matters
)
return {
'prediction_error': prediction_error,
'stakeholder_satisfaction': stakeholder_satisfaction,
'long_term_score': long_term_score,
'moral_coherence': moral_coherence,
'improvement_score': improvement_score
}
def _compute_moral_learning_loss(self, experience: 'MoralExperience',
signals: Dict) -> torch.Tensor:
"""
Compute loss function for moral learning
This is the mathematical heart of moral improvement
"""
# Reconstruct the decision that was made
situation_embedding = self.moral_engine._encode_moral_situation(experience.situation)
predicted_decision = self.moral_engine(experience.situation, [experience.action_taken])
# Target: What should we have predicted based on actual outcomes?
target_decision = self._construct_target_decision(experience, signals)
# Prediction loss: Learn to predict outcomes more accurately
prediction_loss = F.mse_loss(
predicted_decision['predicted_outcome'],
target_decision['actual_outcome']
)
# Stakeholder satisfaction loss: Learn to maximize stakeholder wellbeing
satisfaction_loss = F.mse_loss(
predicted_decision['predicted_satisfaction'],
torch.tensor(signals['stakeholder_satisfaction'])
)
# Moral coherence loss: Learn to be consistent with moral principles
coherence_loss = F.mse_loss(
predicted_decision['moral_reasoning'],
target_decision['ideal_moral_reasoning']
)
# Long-term consequence loss: Learn to consider long-term impacts
long_term_loss = F.mse_loss(
predicted_decision['long_term_prediction'],
torch.tensor(signals['long_term_score'])
)
# Weighted combination
total_loss = (
0.3 * prediction_loss +
0.4 * satisfaction_loss +
0.1 * coherence_loss +
0.2 * long_term_loss
)
return total_loss
class MoralCurriculum:
"""
Structured curriculum for learning moral reasoning progressively
PM Notes: Like teaching a child morality, we start with simple cases
and gradually work up to complex moral dilemmas. This ensures stable learning.
"""
def __init__(self):
self.difficulty_levels = self._define_difficulty_levels()
self.current_level = 0
self.mastery_threshold = 0.85
self.scenario_generator = MoralScenarioGenerator()
def _define_difficulty_levels(self) -> List[Dict]:
"""
Define progressive difficulty levels for moral learning
"""
return [
{
'level': 0,
'name': 'Basic Harm Prevention',
'description': 'Simple scenarios about preventing obvious harm',
'stakeholders': 1,
'moral_principles': ['harm_prevention'],
'time_horizon': 'immediate',
'complexity': 'low'
},
{
'level': 1,
'name': 'Truth and Honesty',
'description': 'Scenarios involving truthfulness and deception',
'stakeholders': 2,
'moral_principles': ['truth', 'harm_prevention'],
'time_horizon': 'short_term',
'complexity': 'low'
},
{
'level': 2,
'name': 'Fairness and Justice',
'description': 'Resource allocation and fair treatment scenarios',
'stakeholders': 3,
'moral_principles': ['justice', 'fairness', 'harm_prevention'],
'time_horizon': 'medium_term',
'complexity': 'medium'
},
{
'level': 3,
'name': 'Autonomy and Consent',
'description': 'Respect for individual choice and decision-making',
'stakeholders': 2,
'moral_principles': ['autonomy', 'dignity', 'harm_prevention'],
'time_horizon': 'medium_term',
'complexity': 'medium'
},
{
'level': 4,
'name': 'Care and Relationships',
'description': 'Preserving relationships and responding to vulnerability',
'stakeholders': 4,
'moral_principles': ['care', 'dignity', 'harm_prevention'],
'time_horizon': 'long_term',
'complexity': 'medium'
},
{
'level': 5,
'name': 'Complex Trade-offs',
'description': 'Scenarios with competing moral principles',
'stakeholders': 5,
'moral_principles': ['all'],
'time_horizon': 'long_term',
'complexity': 'high'
},
{
'level': 6,
'name': 'Cultural Sensitivity',
'description': 'Cross-cultural moral reasoning scenarios',
'stakeholders': 6,
'moral_principles': ['all'],
'time_horizon': 'long_term',
'complexity': 'high',
'cultural_contexts': ['multiple']
},
{
'level': 7,
'name': 'Novel Moral Situations',
'description': 'Unprecedented scenarios requiring creative moral reasoning',
'stakeholders': 'variable',
'moral_principles': ['all'],
'time_horizon': 'variable',
'complexity': 'very_high'
}
]
def get_current_training_scenarios(self, batch_size: int = 32) -> List[Dict]:
"""
Generate training scenarios at appropriate difficulty level
"""
current_difficulty = self.difficulty_levels[self.current_level]
scenarios = []
for _ in range(batch_size):
scenario = self.scenario_generator.generate_scenario(
difficulty_spec=current_difficulty
)
scenarios.append(scenario)
return scenarios
def assess_mastery(self, recent_performance: List[float]) -> bool:
"""
Assess whether current level has been mastered
"""
if len(recent_performance) < 10:
return False
average_performance = np.mean(recent_performance[-10:])
return average_performance >= self.mastery_threshold
def advance_curriculum(self) -> bool:
"""
Advance to next difficulty level if current level is mastered
"""
if self.current_level < len(self.difficulty_levels) - 1:
self.current_level += 1
print(f"Advanced to level {self.current_level}: {self.difficulty_levels[self.current_level]['name']}")
return True
return False
class MoralExperience:
"""
Data structure for storing moral experiences for learning
PM Notes: This is like a detailed diary entry for each moral decision,
storing everything we need to learn from the experience later.
"""
def __init__(self, situation: str, action_taken: str, predicted_outcome: Dict,
actual_outcome: Dict, stakeholder_feedback: List[Dict],
timestamp: datetime, moral_reasoning_trace: List[Dict]):
self.id = self._generate_id()
self.situation = situation
self.action_taken = action_taken
self.predicted_outcome = predicted_outcome
self.actual_outcome = actual_outcome
self.stakeholder_feedback = stakeholder_feedback
self.timestamp = timestamp
self.moral_reasoning_trace = moral_reasoning_trace
# Derived fields calculated after creation
self.moral_complexity = self._calculate_moral_complexity()
self.stakeholder_count = len(stakeholder_feedback)
self.outcome_quality = self._assess_outcome_quality()
def _generate_id(self) -> str:
"""Generate unique identifier for this experience"""
return f"moral_exp_{int(time.time())}_{random.randint(1000, 9999)}"
def _calculate_moral_complexity(self) -> float:
"""
Calculate the complexity of this moral situation
More complex situations are more valuable for learning
"""
complexity_factors = {
'stakeholder_count': min(len(self.stakeholder_feedback) / 10, 1.0),
'principle_conflicts': len(self.moral_reasoning_trace) / 20,
'uncertainty_level': self._assess_uncertainty_level(),
'time_horizon': self._assess_time_horizon(),
'cultural_complexity': self._assess_cultural_complexity()
}
return np.mean(list(complexity_factors.values()))
def _assess_outcome_quality(self) -> float:
"""
Assess the quality of the moral outcome
This becomes our learning target
"""
if not self.stakeholder_feedback:
return 0.5 # Neutral if no feedback
satisfaction_scores = [
feedback.get('satisfaction', 0.5)
for feedback in self.stakeholder_feedback
]
# Weight by stakeholder importance/vulnerability
weighted_scores = []
for i, score in enumerate(satisfaction_scores):
weight = self.stakeholder_feedback[i].get('vulnerability_weight', 1.0)
weighted_scores.append(score * weight)
return np.mean(weighted_scores)
class MoralExperienceDatabase:
"""
Database for storing and retrieving moral experiences for learning
PM Notes: This is the "memory bank" where all moral experiences are stored
so the system can learn from past decisions and improve over time.
"""
def __init__(self, storage_path: str = "moral_experiences.db"):
self.storage_path = storage_path
self.experiences = []
self.experience_index = {} # For fast lookup
self.similarity_index = FaissVectorIndex() # For finding similar experiences
def store_experience(self, experience: MoralExperience) -> None:
"""Store a moral experience in the database"""
self.experiences.append(experience)
self.experience_index[experience.id] = len(self.experiences) - 1
# Add to similarity index for finding similar experiences
experience_vector = self._vectorize_experience(experience)
self.similarity_index.add_vector(experience.id, experience_vector)
# Periodic cleanup to maintain database size
if len(self.experiences) % 1000 == 0:
self._cleanup_old_experiences()
def find_similar_experiences(self, current_situation: str,
top_k: int = 10) -> List[MoralExperience]:
"""
Find experiences similar to current situation for analogical reasoning
PM Notes: When facing a new moral situation, look back at similar
past situations to learn from previous decisions.
"""
situation_vector = self._vectorize_situation(current_situation)
similar_ids = self.similarity_index.search(situation_vector, top_k)
similar_experiences = [
self.experiences[self.experience_index[exp_id]]
for exp_id in similar_ids
if exp_id in self.experience_index
]
return similar_experiences
def get_training_batch(self, batch_size: int = 32,
difficulty_level: int = None) -> List[MoralExperience]:
"""
Get a batch of experiences for training, optionally filtered by difficulty
"""
if difficulty_level is not None:
# Filter by complexity level
filtered_experiences = [
exp for exp in self.experiences
if self._complexity_to_level(exp.moral_complexity) == difficulty_level
]
else:
filtered_experiences = self.experiences
# Sample random batch
if len(filtered_experiences) < batch_size:
return filtered_experiences
return random.sample(filtered_experiences, batch_size)
def _vectorize_experience(self, experience: MoralExperience) -> np.ndarray:
"""Convert experience to vector for similarity search"""
# Use a pre-trained sentence transformer to encode the situation
from sentence_transformers import SentenceTransformer
encoder = SentenceTransformer('all-MiniLM-L6-v2')
situation_embedding = encoder.encode(experience.situation)
action_embedding = encoder.encode(experience.action_taken)
# Combine with numerical features
numerical_features = np.array([
experience.moral_complexity,
experience.stakeholder_count,
experience.outcome_quality,
len(experience.moral_reasoning_trace)
])
# Concatenate all features
full_vector = np.concatenate([
situation_embedding,
action_embedding,
numerical_features
])
return full_vector
6. Real-World Deployment Framework
class AutonomousMoralAgentDeployment:
"""
Framework for deploying autonomous moral agents in real-world environments
PM Notes: This is how we actually put the moral agent "out in the wild"
to operate independently while maintaining safety and monitoring.
"""
def __init__(self, moral_engine: MoralCognitionEngine):
self.moral_engine = moral_engine
self.safety_monitor = MoralSafetyMonitor()
self.performance_tracker = MoralPerformanceTracker()
self.human_escalation = HumanEscalationSystem()
self.environment_interface = EnvironmentInterface()
def deploy_autonomous_agent(self, environment_config: Dict) -> 'DeploymentSession':
"""
Deploy the autonomous moral agent in a real environment
"""
# Initialize deployment session
session = DeploymentSession(
agent=self.moral_engine,
environment=environment_config,
start_time=datetime.now(),
safety_monitor=self.safety_monitor
)
# Pre-deployment safety checks
safety_check_result = self.safety_monitor.pre_deployment_check(
agent=self.moral_engine,
environment=environment_config
)
if not safety_check_result.approved:
raise DeploymentError(f"Safety check failed: {safety_check_result.reason}")
# Initialize environment interface
self.environment_interface.connect(environment_config)
# Begin autonomous operation
session.status = "ACTIVE"
self._run_autonomous_operation_loop(session)
return session
def _run_autonomous_operation_loop(self, session: 'DeploymentSession') -> None:
"""
Main autonomous operation loop - the agent operates independently here
PM Notes: This is where the magic happens - the agent is truly autonomous,
making moral decisions without human intervention.
"""
while session.status == "ACTIVE":
try:
# 1. Perceive current moral situation
current_situation = self.environment_interface.perceive_situation()
# 2. Safety check: Is this situation within our competence?
competence_check = self.safety_monitor.check_competence(
situation=current_situation,
agent_capabilities=self.moral_engine.get_capabilities()
)
if not competence_check.competent:
# Escalate to human oversight
self.human_escalation.escalate(
situation=current_situation,
reason=competence_check.reason,
urgency=competence_check.urgency
)
continue
# 3. Generate possible actions
possible_actions = self.environment_interface.get_possible_actions(
current_situation
)
# 4. Make autonomous moral decision
moral_decision = self.moral_engine.make_autonomous_moral_decision(
moral_situation=current_situation,
possible_actions=possible_actions
)
# 5. Safety check: Is this decision safe to execute?
safety_check = self.safety_monitor.check_decision_safety(
decision=moral_decision,
situation=current_situation
)
if not safety_check.safe:
# Block unsafe decision and escalate
self.human_escalation.escalate(
situation=current_situation,
blocked_decision=moral_decision,
reason=safety_check.reason,
urgency="HIGH"
)
continue
# 6. Execute moral decision autonomously
execution_result = self.environment_interface.execute_action(
action=moral_decision['chosen_action'],
reasoning=moral_decision['moral_reasoning']
)
# 7. Monitor outcomes and learn
self._monitor_and_learn(
session=session,
situation=current_situation,
decision=moral_decision,
result=execution_result
)
# 8. Update session statistics
session.decisions_made += 1
session.last_decision_time = datetime.now()
# 9. Brief pause before next decision cycle
time.sleep(0.1) # Allow for real-time responsiveness
except Exception as e:
# Handle unexpected errors gracefully
self.safety_monitor.handle_error(e, session)
if session.error_count > 5:
session.status = "TERMINATED"
self.human_escalation.emergency_shutdown(session, str(e))
def _monitor_and_learn(self, session: 'DeploymentSession',
situation: Dict, decision: Dict, result: Dict) -> None:
"""
Monitor the outcomes of moral decisions and learn from them
"""
# Track performance metrics
performance_metrics = self.performance_tracker.evaluate_decision(
situation=situation,
decision=decision,
outcome=result
)
session.performance_history.append(performance_metrics)
# Collect stakeholder feedback
stakeholder_feedback = self.environment_interface.collect_stakeholder_feedback(
decision=decision,
outcome=result
)
# Learn from this experience
if stakeholder_feedback: # Only learn when we have feedback
learning_result = session.agent.experience_learner.learn_from_moral_experience(
situation=situation['description'],
chosen_action=decision['chosen_action']['description'],
outcome={
'predicted': decision.get('predicted_outcome', {}),
'actual': result
},
stakeholder_feedback=stakeholder_feedback
)
session.learning_history.append(learning_result)
class MoralSafetyMonitor:
"""
Safety monitoring system for autonomous moral agents
PM Notes: This is like a "safety pilot" that watches the autonomous agent
and can take control if something goes wrong or the situation is too complex.
"""
def __init__(self):
self.safety_rules = self._load_safety_rules()
self.competence_boundaries = self._define_competence_boundaries()
self.risk_assessor = MoralRiskAssessor()
self.emergency_protocols = EmergencyProtocols()
def check_decision_safety(self, decision: Dict, situation: Dict) -> 'SafetyCheckResult':
"""
Check if a moral decision is safe to execute
Returns approval/rejection with reasoning
"""
# 1. Check against hard safety rules
safety_violations = self._check_safety_rule_violations(decision, situation)
if safety_violations:
return SafetyCheckResult(
safe=False,
reason=f"Safety rule violations: {safety_violations}",
severity="HIGH"
)
# 2. Assess potential risks
risk_assessment = self.risk_assessor.assess_risks(decision, situation)
if risk_assessment.max_risk > 0.8:
return SafetyCheckResult(
safe=False,
reason=f"High risk detected: {risk_assessment.primary_risks}",
severity="MEDIUM"
)
# 3. Check for irreversible consequences
irreversibility_check = self._check_irreversibility(decision, situation)
if irreversibility_check.irreversible and irreversibility_check.uncertainty > 0.3:
return SafetyCheckResult(
safe=False,
reason="Irreversible action with high uncertainty",
severity="MEDIUM"
)
# 4. Verify decision quality meets minimum standards
quality_check = self._check_decision_quality(decision)
if quality_check.quality < 0.6:
return SafetyCheckResult(
safe=False,
reason=f"Decision quality too low: {quality_check.quality:.2f}",
severity="LOW"
)
# All checks passed
return SafetyCheckResult(
safe=True,
reason="All safety checks passed",
severity="NONE"
)
def check_competence(self, situation: Dict, agent_capabilities: Dict) -> 'CompetenceCheckResult':
"""
Check if the agent is competent to handle this situation
"""
# 1. Complexity assessment
situation_complexity = self._assess_situation_complexity(situation)
agent_competence_level = agent_capabilities.get('competence_level', 0.5)
if situation_complexity > agent_competence_level + 0.2:
return CompetenceCheckResult(
competent=False,
reason=f"Situation too complex (complexity: {situation_complexity:.2f}, competence: {agent_competence_level:.2f})",
urgency="MEDIUM"
)
# 2. Domain expertise check
required_domains = self._identify_required_domains(situation)
agent_domains = set(agent_capabilities.get('domains', []))
missing_domains = required_domains - agent_domains
if missing_domains:
return CompetenceCheckResult(
competent=False,
reason=f"Missing domain expertise: {missing_domains}",
urgency="LOW"
)
# 3. Novel situation detection
novelty_score = self._assess_situation_novelty(situation)
if novelty_score > 0.9:
return CompetenceCheckResult(
competent=False,
reason=f"Highly novel situation (novelty: {novelty_score:.2f})",
urgency="HIGH"
)
# Agent is competent to handle this situation
return CompetenceCheckResult(
competent=True,
reason="Agent competent for this situation",
urgency="NONE"
)
@dataclass
class SafetyCheckResult:
safe: bool
reason: str
severity: str # "NONE", "LOW", "MEDIUM", "HIGH"
@dataclass
class CompetenceCheckResult:
competent: bool
reason: str
urgency: str # "NONE", "LOW", "MEDIUM", "HIGH"
class DeploymentSession:
"""
Represents an active deployment session of an autonomous moral agent
PM Notes: This tracks everything about how the agent is performing
during its autonomous operation.
"""
def __init__(self, agent: MoralCognitionEngine, environment: Dict,
start_time: datetime, safety_monitor: MoralSafetyMonitor):
self.session_id = f"deploy_{int(time.time())}"
self.agent = agent
self.environment = environment
self.start_time = start_time
self.safety_monitor = safety_monitor
# Session state
self.status = "INITIALIZING" # INITIALIZING, ACTIVE, PAUSED, TERMINATED
self.decisions_made = 0
self.error_count = 0
self.last_decision_time = None
# Performance tracking
self.performance_history = []
self.learning_history = []
self.safety_incidents = []
self.human_escalations = []
def get_session_summary(self) -> Dict:
"""Generate summary of deployment session performance"""
duration = datetime.now() - self.start_time
avg_performance = np.mean([p.overall_score for p in self.performance_history]) if self.performance_history else 0
return {
'session_id': self.session_id,
'duration': str(duration),
'decisions_made': self.decisions_made,
'error_count': self.error_count,
'average_performance': avg_performance,
'safety_incidents': len(self.safety_incidents),
'human_escalations': len(self.human_escalations),
'learning_improvements': len(self.learning_history),
'status': self.status
}
7. Development Implementation Guide
Quick Start for Developers
"""
QUICK START GUIDE FOR DEVELOPERS
================================
This section provides practical guidance for implementing the moral cognition engine.
PM Notes: This is the "how to actually build it" section. Developers should
start here and work through each component systematically.
"""
def quick_start_moral_agent():
"""
Minimal working example of the moral cognition engine
Use this as your starting point and build up from here
"""
# 1. Initialize the core components
print("Initializing Moral Cognition Engine...")
moral_engine = MoralCognitionEngine()
# 2. Create basic moral fields
moral_fields = MoralFieldSuperposition([
MoralField(MoralFieldType.DEONTOLOGICAL, strength=0.3),
MoralField(MoralFieldType.CONSEQUENTIALIST, strength=0.4),
MoralField(MoralFieldType.VIRTUE, strength=0.2),
MoralField(MoralFieldType.CARE, strength=0.1)
])
# 3. Test with a simple moral scenario
test_situation = "A person asks for directions, but you know they're going to do something harmful at that location."
possible_actions = [
"Give accurate directions as requested",
"Give wrong directions to prevent harm",
"Refuse to give directions and explain concerns",
"Give accurate directions but warn about potential consequences"
]
# 4. Make a moral decision
print("Making moral decision...")
decision = moral_engine(test_situation, possible_actions)
# 5. Display the result
print(f"Chosen action: {decision['chosen_action']}")
print(f"Moral reasoning: {decision['moral_explanation']}")
print(f"Confidence: {decision['confidence']:.2f}")
return decision
# Development milestones and testing framework
class DevelopmentMilestones:
"""
Progressive development milestones for building the moral cognition engine
PM Notes: Use this checklist to track development progress and ensure
each component works before moving to the next.
"""
def __init__(self):
self.milestones = [
{
'name': 'Milestone 1: Basic Moral Vector Math',
'description': 'Implement MoralVector class and basic operations',
'tests': ['test_moral_vector_addition', 'test_moral_magnitude'],
'estimated_time': '1 week',
Development Implementation Guide: Building the Moral Cognition Engine
7. Development Implementation Guide (Continued)
Quick Start for Developers (Continued)
# Development milestones and testing framework
class DevelopmentMilestones:
"""
Progressive development milestones for building the moral cognition engine
PM Notes: Use this checklist to track development progress and ensure
each component works before moving to the next.
"""
def __init__(self):
self.milestones = [
{
'name': 'Milestone 1: Basic Moral Vector Math',
'description': 'Implement MoralVector class and basic operations',
'tests': ['test_moral_vector_addition', 'test_moral_magnitude'],
'estimated_time': '1 week',
'dependencies': [],
'deliverables': ['MoralVector class', 'Unit tests', 'Documentation']
},
{
'name': 'Milestone 2: Moral Field Generation',
'description': 'Implement moral fields and force calculations',
'tests': ['test_deontological_field', 'test_field_superposition'],
'estimated_time': '2 weeks',
'dependencies': ['Milestone 1'],
'deliverables': ['MoralField classes', 'Force calculation tests', 'Field visualization']
},
{
'name': 'Milestone 3: Moral Agent Navigation',
'description': 'Implement agent movement through moral space',
'tests': ['test_moral_navigation', 'test_equilibrium_finding'],
'estimated_time': '2 weeks',
'dependencies': ['Milestone 2'],
'deliverables': ['MoralAgent class', 'Navigation algorithms', 'Trajectory visualization']
},
{
'name': 'Milestone 4: Neural-Symbolic Integration',
'description': 'Connect neural networks with symbolic reasoning',
'tests': ['test_neural_symbolic_fusion', 'test_end_to_end_reasoning'],
'estimated_time': '3 weeks',
'dependencies': ['Milestone 3'],
'deliverables': ['MoralCognitionEngine', 'Integration tests', 'Performance benchmarks']
},
{
'name': 'Milestone 5: Learning and Adaptation',
'description': 'Implement experience-based learning',
'tests': ['test_experience_learning', 'test_moral_improvement'],
'estimated_time': '3 weeks',
'dependencies': ['Milestone 4'],
'deliverables': ['Learning system', 'Experience database', 'Improvement metrics']
},
{
'name': 'Milestone 6: Safety and Deployment',
'description': 'Implement safety monitoring and real-world deployment',
'tests': ['test_safety_monitoring', 'test_autonomous_operation'],
'estimated_time': '4 weeks',
'dependencies': ['Milestone 5'],
'deliverables': ['Safety system', 'Deployment framework', 'Real-world testing']
}
]
def get_current_milestone(self, completed_milestones: List[str]) -> Dict:
"""Get the next milestone to work on"""
for milestone in self.milestones:
if milestone['name'] not in completed_milestones:
# Check if dependencies are satisfied
deps_satisfied = all(
dep in completed_milestones
for dep in milestone['dependencies']
)
if deps_satisfied:
return milestone
return None
def generate_test_suite(self, milestone_name: str) -> str:
"""Generate test code for a specific milestone"""
test_templates = {
'Milestone 1': self._generate_vector_tests(),
'Milestone 2': self._generate_field_tests(),
'Milestone 3': self._generate_navigation_tests(),
'Milestone 4': self._generate_integration_tests(),
'Milestone 5': self._generate_learning_tests(),
'Milestone 6': self._generate_deployment_tests()
}
return test_templates.get(milestone_name, "# No tests defined for this milestone")
def _generate_vector_tests(self) -> str:
return """
import unittest
import numpy as np
from moral_cognition_engine import MoralVector
class TestMoralVector(unittest.TestCase):
'''
Test suite for basic moral vector operations
PM Notes: These tests ensure our fundamental math is correct.
If these fail, nothing else will work properly.
'''
def setUp(self):
self.vector_a = MoralVector(1.0, 0.5, 0.8, 0.3, 0.7, 0.9, 0.4)
self.vector_b = MoralVector(0.2, 0.3, 0.1, 0.6, 0.4, 0.2, 0.8)
def test_moral_vector_addition(self):
'''Test that moral vectors add correctly'''
result = self.vector_a + self.vector_b
expected = MoralVector(1.2, 0.8, 0.9, 0.9, 1.1, 1.1, 1.2)
self.assertAlmostEqual(result.autonomy, expected.autonomy, places=5)
self.assertAlmostEqual(result.beneficence, expected.beneficence, places=5)
# ... test all dimensions
def test_moral_magnitude(self):
'''Test moral magnitude calculation'''
magnitude = self.vector_a.moral_magnitude()
expected_magnitude = np.sqrt(1.0**2 + 0.5**2 + 0.8**2 + 0.3**2 + 0.7**2 + 0.9**2 + 0.4**2)
self.assertAlmostEqual(magnitude, expected_magnitude, places=5)
def test_tensor_conversion(self):
'''Test conversion to PyTorch tensor'''
tensor = self.vector_a.to_tensor()
self.assertEqual(tensor.shape, (7,))
self.assertEqual(tensor[0].item(), 1.0) # autonomy
self.assertEqual(tensor[1].item(), 0.5) # beneficence
def test_zero_vector(self):
'''Test zero vector behavior'''
zero_vector = MoralVector(0, 0, 0, 0, 0, 0, 0)
self.assertEqual(zero_vector.moral_magnitude(), 0.0)
result = self.vector_a + zero_vector
self.assertEqual(result.autonomy, self.vector_a.autonomy)
if __name__ == '__main__':
unittest.main()
"""
def create_development_environment():
"""
Set up the complete development environment for the moral cognition engine
PM Notes: Run this first to get your development environment ready.
This installs all dependencies and sets up the project structure.
"""
import os
import subprocess
import sys
print("Setting up Moral Cognition Engine development environment...")
# 1. Create project directory structure
project_structure = {
'moral_cognition_engine/': [
'__init__.py',
'core/',
'learning/',
'deployment/',
'tests/',
'data/',
'configs/',
'notebooks/',
'docs/'
],
'moral_cognition_engine/core/': [
'__init__.py',
'moral_vectors.py',
'moral_fields.py',
'moral_agents.py',
'neural_networks.py'
],
'moral_cognition_engine/learning/': [
'__init__.py',
'experience_learner.py',
'curriculum.py',
'database.py'
],
'moral_cognition_engine/deployment/': [
'__init__.py',
'safety_monitor.py',
'deployment_session.py',
'environment_interface.py'
],
'moral_cognition_engine/tests/': [
'__init__.py',
'test_moral_vectors.py',
'test_moral_fields.py',
'test_integration.py'
]
}
for directory, files in project_structure.items():
os.makedirs(directory, exist_ok=True)
for file in files:
if file.endswith('.py'):
file_path = os.path.join(directory, file)
if not os.path.exists(file_path):
with open(file_path, 'w') as f:
f.write(f'"""{file} - Part of Moral Cognition Engine"""\n\n')
# 2. Create requirements.txt
requirements = """
# Core dependencies
torch>=2.0.0
numpy>=1.21.0
scipy>=1.7.0
transformers>=4.20.0
sentence-transformers>=2.2.0
# Neural symbolic programming
# scallop-lang # Install separately: pip install scallop-lang
# Machine learning utilities
scikit-learn>=1.0.0
pandas>=1.3.0
matplotlib>=3.5.0
seaborn>=0.11.0
# Development and testing
pytest>=7.0.0
pytest-cov>=4.0.0
black>=22.0.0
flake8>=5.0.0
mypy>=0.991
# Optional: Advanced features
faiss-cpu>=1.7.0 # For similarity search
wandb>=0.13.0 # For experiment tracking
jupyter>=1.0.0 # For interactive development
# Formal verification (advanced)
# lean4 # Install separately if doing formal verification
"""
with open('requirements.txt', 'w') as f:
f.write(requirements.strip())
# 3. Create basic configuration
config_template = """
# Moral Cognition Engine Configuration
moral_cognition_config:
# Core model parameters
model:
hidden_dim: 512
moral_dimensions: 7
learning_rate: 1e-4
batch_size: 32
# Moral field parameters
moral_fields:
deontological_strength: 0.3
consequentialist_strength: 0.4
virtue_strength: 0.2
care_strength: 0.1
justice_strength: 0.0 # Will be learned
# Learning parameters
learning:
curriculum_enabled: true
experience_replay: true
meta_learning: true
improvement_threshold: 0.85
# Safety parameters
safety:
max_risk_tolerance: 0.8
competence_threshold: 0.6
escalation_enabled: true
human_oversight: true
# Deployment parameters
deployment:
max_session_duration: 3600 # 1 hour
decision_timeout: 30 # 30 seconds
safety_check_interval: 1 # 1 second
"""
with open('moral_cognition_engine/configs/default_config.yaml', 'w') as f:
f.write(config_template.strip())
print("✅ Development environment created!")
print("Next steps:")
print("1. Install dependencies: pip install -r requirements.txt")
print("2. Start with Milestone 1: Implement MoralVector class")
print("3. Run tests: pytest moral_cognition_engine/tests/")
print("4. Read the documentation in moral_cognition_engine/docs/")
# Starter code templates for each component
class CodeTemplates:
"""
Ready-to-use code templates for implementing the moral cognition engine
PM Notes: These templates provide the basic structure for each component.
Developers can copy these and fill in the implementation details.
"""
@staticmethod
def moral_vector_template() -> str:
return '''
"""
moral_vectors.py - Core moral vector mathematics
This implements the fundamental geometric representation of moral space.
Each moral situation and action is represented as a vector in 7-dimensional space.
"""
import numpy as np
import torch
from dataclasses import dataclass
from typing import Union, List
@dataclass
class MoralVector:
"""
Represents a point in 7-dimensional moral space
Developer Notes:
- Each dimension represents a fundamental moral concern
- Vectors can be added, subtracted, and scaled like regular vectors
- The magnitude represents the "moral intensity" of a situation
PM Notes:
Think of this like GPS coordinates, but for ethics instead of geography.
"""
autonomy: float = 0.0 # Respect for individual choice/freedom
beneficence: float = 0.0 # Promoting wellbeing/good outcomes
justice: float = 0.0 # Fairness and equal treatment
truth: float = 0.0 # Honesty and transparency
care: float = 0.0 # Compassion and relationship preservation
dignity: float = 0.0 # Respect for inherent human worth
sustainability: float = 0.0 # Long-term flourishing
def __post_init__(self):
"""Validate moral vector values"""
# Clamp values to reasonable range [-2.0, 2.0]
for field in ['autonomy', 'beneficence', 'justice', 'truth', 'care', 'dignity', 'sustainability']:
value = getattr(self, field)
setattr(self, field, max(-2.0, min(2.0, float(value))))
def to_tensor(self) -> torch.Tensor:
"""Convert to PyTorch tensor for neural network processing"""
return torch.tensor([
self.autonomy, self.beneficence, self.justice, self.truth,
self.care, self.dignity, self.sustainability
], dtype=torch.float32)
@classmethod
def from_tensor(cls, tensor: torch.Tensor) -> 'MoralVector':
"""Create MoralVector from PyTorch tensor"""
values = tensor.detach().cpu().numpy()
return cls(*values)
def to_numpy(self) -> np.ndarray:
"""Convert to numpy array"""
return np.array([
self.autonomy, self.beneficence, self.justice, self.truth,
self.care, self.dignity, self.sustainability
])
def __add__(self, other: 'MoralVector') -> 'MoralVector':
"""Vector addition in moral space"""
return MoralVector(
autonomy=self.autonomy + other.autonomy,
beneficence=self.beneficence + other.beneficence,
justice=self.justice + other.justice,
truth=self.truth + other.truth,
care=self.care + other.care,
dignity=self.dignity + other.dignity,
sustainability=self.sustainability + other.sustainability
)
def __sub__(self, other: 'MoralVector') -> 'MoralVector':
"""Vector subtraction in moral space"""
return MoralVector(
autonomy=self.autonomy - other.autonomy,
beneficence=self.beneficence - other.beneficence,
justice=self.justice - other.justice,
truth=self.truth - other.truth,
care=self.care - other.care,
dignity=self.dignity - other.dignity,
sustainability=self.sustainability - other.sustainability
)
def __mul__(self, scalar: float) -> 'MoralVector':
"""Scalar multiplication"""
return MoralVector(
autonomy=self.autonomy * scalar,
beneficence=self.beneficence * scalar,
justice=self.justice * scalar,
truth=self.truth * scalar,
care=self.care * scalar,
dignity=self.dignity * scalar,
sustainability=self.sustainability * scalar
)
def moral_magnitude(self) -> float:
"""Calculate the moral magnitude (L2 norm)"""
return float(np.sqrt(sum([
self.autonomy**2, self.beneficence**2, self.justice**2, self.truth**2,
self.care**2, self.dignity**2, self.sustainability**2
])))
def normalize(self) -> 'MoralVector':
"""Return normalized moral vector (unit length)"""
magnitude = self.moral_magnitude()
if magnitude == 0:
return MoralVector() # Return zero vector if magnitude is zero
return self * (1.0 / magnitude)
def dot_product(self, other: 'MoralVector') -> float:
"""Calculate dot product with another moral vector"""
return (
self.autonomy * other.autonomy +
self.beneficence * other.beneficence +
self.justice * other.justice +
self.truth * other.truth +
self.care * other.care +
self.dignity * other.dignity +
self.sustainability * other.sustainability
)
def moral_distance(self, other: 'MoralVector') -> float:
"""Calculate moral distance to another vector"""
diff = self - other
return diff.moral_magnitude()
def is_similar(self, other: 'MoralVector', threshold: float = 0.1) -> bool:
"""Check if two moral vectors are similar within threshold"""
return self.moral_distance(other) < threshold
def __str__(self) -> str:
"""Human-readable string representation"""
return f"MoralVector(autonomy={self.autonomy:.2f}, beneficence={self.beneficence:.2f}, justice={self.justice:.2f}, truth={self.truth:.2f}, care={self.care:.2f}, dignity={self.dignity:.2f}, sustainability={self.sustainability:.2f})"
def __repr__(self) -> str:
return self.__str__()
# TODO: Implement these functions
def create_moral_vector_from_text(text: str) -> MoralVector:
"""
Create a moral vector by analyzing text description
Developer Notes: This needs to be implemented using NLP techniques
to extract moral dimensions from natural language descriptions.
"""
# TODO: Implement text-to-moral-vector conversion
# This would use sentence transformers or similar to encode moral content
raise NotImplementedError("Text to moral vector conversion not yet implemented")
def visualize_moral_vector(vector: MoralVector, title: str = "Moral Vector") -> None:
"""
Visualize a moral vector as a radar chart
PM Notes: This creates a visual representation showing the strength
of each moral dimension, like a spider web diagram.
"""
# TODO: Implement visualization using matplotlib
raise NotImplementedError("Moral vector visualization not yet implemented")
def calculate_moral_vector_similarity(vectors: List[MoralVector]) -> np.ndarray:
"""
Calculate similarity matrix between multiple moral vectors
Returns: NxN matrix where entry (i,j) is similarity between vectors i and j
"""
# TODO: Implement similarity matrix calculation
raise NotImplementedError("Moral vector similarity calculation not yet implemented")
'''
@staticmethod
def moral_field_template() -> str:
return '''
"""
moral_fields.py - Moral field theory implementation
This implements the core insight: moral principles create "fields" that exert
forces on moral agents, similar to how gravity and electromagnetism work in physics.
"""
import numpy as np
import torch
from typing import Dict, List, Callable
from enum import Enum
from dataclasses import dataclass
from .moral_vectors import MoralVector
class MoralFieldType(Enum):
"""Types of moral fields corresponding to different ethical frameworks"""
DEONTOLOGICAL = "duty_based" # Kant-style duty ethics
CONSEQUENTIALIST = "outcome_based" # Utilitarian outcome ethics
VIRTUE = "character_based" # Aristotelian virtue ethics
CARE = "relationship_based" # Feminist care ethics
JUSTICE = "fairness_based" # Rawlsian justice ethics
@dataclass
class MoralFieldParameters:
"""Parameters that define how a moral field behaves"""
strength: float = 1.0 # Overall field strength
range_factor: float = 1.0 # How far the field extends
nonlinearity: float = 2.0 # Field strength dropoff (higher = more nonlinear)
cultural_modifier: float = 1.0 # Cultural context adjustment
temporal_decay: float = 0.0 # How field strength changes over time
class MoralField:
"""
A moral field that exerts forces on moral agents
Mathematical Foundation:
Each moral principle Φ creates a potential field: V_Φ(x) = ∫ Φ(x') * G(x,x') dx'
The moral force is: F_Φ(x) = -∇V_Φ(x)
Developer Notes:
- Each field type implements different moral reasoning approaches
- Forces are calculated as gradients of potential functions
- Multiple fields can be superposed (added together)
PM Notes:
Think of moral principles as invisible forces that "pull" decisions
toward ethically better outcomes. Strong principles create strong pulls.
"""
def __init__(self, field_type: MoralFieldType, parameters: MoralFieldParameters = None):
self.field_type = field_type
self.parameters = parameters or MoralFieldParameters()
self.field_function = self._get_field_function()
def calculate_moral_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Calculate the moral force at a given position in moral space
Args:
position: Current position in moral space
context: Situational context (stakeholders, urgency, etc.)
Returns:
MoralVector representing the force direction and magnitude
"""
# Apply the field-specific function
base_force = self.field_function(position, context)
# Apply field parameters
modified_force = self._apply_field_parameters(base_force, context)
return modified_force
def _get_field_function(self) -> Callable:
"""Get the field function based on field type"""
field_functions = {
MoralFieldType.DEONTOLOGICAL: self._deontological_field,
MoralFieldType.CONSEQUENTIALIST: self._consequentialist_field,
MoralFieldType.VIRTUE: self._virtue_field,
MoralFieldType.CARE: self._care_field,
MoralFieldType.JUSTICE: self._justice_field
}
return field_functions[self.field_type]
def _deontological_field(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Kant-style deontological field: Strong pull toward universalizable duties
Mathematical form: F_duty = -k * ∇(universalizability_potential(position))
Key principles:
- Categorical imperative: Act only according to maxims you could will to be universal laws
- Humanity formula: Treat humanity always as an end, never merely as means
"""
# Calculate universalizability gradient
universalizability_score = self._assess_universalizability(position, context)
universalizability_gradient = self._calculate_gradient(universalizability_score, position)
# Calculate human dignity preservation gradient
dignity_score = self._assess_dignity_preservation(position, context)
dignity_gradient = self._calculate_gradient(dignity_score, position)
# Combine deontological forces
force = MoralVector(
autonomy=self.parameters.strength * (universalizability_gradient.autonomy + dignity_gradient.autonomy * 0.5),
beneficence=self.parameters.strength * universalizability_gradient.beneficence * 0.3,
justice=self.parameters.strength * universalizability_gradient.justice,
truth=self.parameters.strength * universalizability_gradient.truth * 1.2, # Truth is central to Kant
care=self.parameters.strength * dignity_gradient.care,
dignity=self.parameters.strength * dignity_gradient.dignity * 1.5, # Dignity is central to Kant
sustainability=self.parameters.strength * universalizability_gradient.sustainability * 0.8
)
return force
def _consequentialist_field(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Utilitarian consequentialist field: Pull toward maximum aggregate wellbeing
Mathematical form: F_util = -k * ∇(utility_potential(position))
"""
# Calculate expected utility for all affected parties
total_utility = self._calculate_total_utility(position, context)
utility_gradient = self._calculate_gradient(total_utility, position)
# Weight by number of people affected (utilitarian aggregation)
affected_parties = context.get('affected_parties', 1)
utility_weight = np.log(affected_parties + 1) # Logarithmic scaling to prevent overwhelming
force = MoralVector(
autonomy=self.parameters.strength * utility_gradient.autonomy * 0.7, # Individual autonomy less important in utilitarianism
beneficence=self.parameters.strength * utility_gradient.beneficence * utility_weight * 1.5, # Wellbeing is central
justice=self.parameters.strength * utility_gradient.justice * 0.9,
truth=self.parameters.strength * utility_gradient.truth * 0.8,
care=self.parameters.strength * utility_gradient.care * 0.8,
dignity=self.parameters.strength * utility_gradient.dignity * 0.7,
sustainability=self.parameters.strength * utility_gradient.sustainability * context.get('time_horizon', 1.0)
)
return force
def _virtue_field(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Aristotelian virtue field: Pull toward character excellence and eudaimonia
Mathematical form: F_virtue = -k * ∇(virtue_potential(position))
"""
# Calculate virtue scores for different character traits
virtues = {
'courage': self._assess_courage(position, context),
'temperance': self._assess_temperance(position, context),
'justice': self._assess_justice_virtue(position, context),
'wisdom': self._assess_practical_wisdom(position, context)
}
# Calculate golden mean (virtue as balance between extremes)
golden_mean_force = self._calculate_golden_mean_force(position, context)
# Calculate eudaimonia (human flourishing) gradient
flourishing_score = self._assess_human_flourishing(position, context)
flourishing_gradient = self._calculate_gradient(flourishing_score, position)
force = golden_mean_force + flourishing_gradient * self.parameters.strength
return force
def _care_field(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Care ethics field: Pull toward preserving relationships and responding to needs
Mathematical form: F_care = -k * ∇(care_potential(position))
"""
# Calculate relationship preservation force
relationship_strength = self._assess_relationship_quality(position, context)
relationship_gradient = self._calculate_gradient(relationship_strength, position)
# Calculate responsiveness to vulnerability
vulnerability_response = self._assess_vulnerability_responsiveness(position, context)
vulnerability_gradient = self._calculate_gradient(vulnerability_response, position)
force = MoralVector(
autonomy=self.parameters.strength * relationship_gradient.autonomy * 0.8,
beneficence=self.parameters.strength * vulnerability_gradient.beneficence * 1.2,
justice=self.parameters.strength * relationship_gradient.justice * 0.9,
truth=self.parameters.strength * relationship_gradient.truth,
care=self.parameters.strength * (relationship_gradient.care + vulnerability_gradient.care) * 1.5,
dignity=self.parameters.strength * vulnerability_gradient.dignity * 1.1,
sustainability=self.parameters.strength * relationship_gradient.sustainability
)
return force
def _justice_field(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Rawlsian justice field: Pull toward fairness behind "veil of ignorance"
Mathematical form: F_justice = -k * ∇(justice_potential(position))
"""
# Calculate difference principle: arrangements that benefit the least advantaged
difference_principle_score = self._assess_difference_principle(position, context)
difference_gradient = self._calculate_gradient(difference_principle_score, position)
# Calculate equal liberty principle: maximum equal basic liberties
liberty_score = self._assess_equal_liberty(position, context)
liberty_gradient = self._calculate_gradient(liberty_score, position)
force = MoralVector(
autonomy=self.parameters.strength * liberty_gradient.autonomy * 1.3,
beneficence=self.parameters.strength * difference_gradient.beneficence,
justice=self.parameters.strength * (difference_gradient.justice + liberty_gradient.justice) * 1.4,
truth=self.parameters.strength * liberty_gradient.truth,
care=self.parameters.strength * difference_gradient.care * 0.9,
dignity=self.parameters.strength * liberty_gradient.dignity * 1.1,
sustainability=self.parameters.strength * difference_gradient.sustainability
)
return force
# Helper methods (these need to be implemented)
def _assess_universalizability(self, position: MoralVector, context: Dict) -> float:
"""Assess how universalizable this moral position is"""
# TODO: Implement universalizability assessment
return 0.5
def _assess_dignity_preservation(self, position: MoralVector, context: Dict) -> float:
"""Assess how well this position preserves human dignity"""
# TODO: Implement dignity assessment
return position.dignity
def _calculate_gradient(self, score: float, position: MoralVector) -> MoralVector:
"""Calculate gradient of a score with respect to moral position"""
# TODO: Implement gradient calculation (numerical differentiation)
# This is a simplified placeholder
gradient_magnitude = score * 0.1
return MoralVector(
autonomy=gradient_magnitude,
beneficence=gradient_magnitude,
justice=gradient_magnitude,
truth=gradient_magnitude,
care=gradient_magnitude,
dignity=gradient_magnitude,
sustainability=gradient_magnitude
)
def _calculate_total_utility(self, position: MoralVector, context: Dict) -> float:
"""Calculate total utility for all stakeholders"""
# TODO: Implement utility calculation
return position.beneficence
def _apply_field_parameters(self, force: MoralVector, context: Dict) -> MoralVector:
"""Apply field parameters to modify the calculated force"""
# Apply strength scaling
scaled_force = force * self.parameters.strength
# Apply cultural context modifications
cultural_modifier = context.get('cultural_context', {}).get('modifier', 1.0)
cultural_adjusted_force = scaled_force * (self.parameters.cultural_modifier * cultural_modifier)
# Apply range factor (how far field influence extends)
distance_factor = 1.0 / (1.0 + self.parameters.range_factor)
range_adjusted_force = cultural_adjusted_force * distance_factor
return range_adjusted_force
class MoralFieldSuperposition:
"""
Multiple moral fields existing simultaneously, like electromagnetic + gravitational fields
PM Notes: Real moral situations involve multiple ethical considerations at once.
This calculates the combined "pull" from all different moral principles.
"""
def __init__(self, fields: List[MoralField]):
self.fields = fields
self.field_weights = {field.field_type: 1.0 for field in fields}
def calculate_total_moral_force(self, position: MoralVector, context: Dict) -> MoralVector:
"""
Superposition principle: Total moral force = sum of individual field forces
F_total = F_duty + F_utility + F_virtue + F_care + F_justice
"""
total_force = MoralVector(0, 0, 0, 0, 0, 0, 0)
for field in self.fields:
field_force = field.calculate_moral_force(position, context)
weight = self.field_weights[field.field_type]
weighted_force = field_force * weight
total_force = total_force + weighted_force
return total_force
def find_moral_equilibrium(self, initial_position: MoralVector, context: Dict,
max_iterations: int = 100, tolerance: float = 1e-6) -> MoralVector:
"""
Find the position where total moral force = 0 (stable equilibrium)
Mathematical method: Gradient descent to find ∇V_total = 0
This is where the moral decision "settles" naturally
"""
current_position = initial_position
learning_rate = 0.01
for iteration in range(max_iterations):
# Calculate current force (negative gradient)
force = self.calculate_total_moral_force(current_position, context)
# Check for convergence
if force.moral_magnitude() < tolerance:
break
# Move toward equilibrium (gradient descent)
step = force * learning_rate
current_position = current_position + step
# Adaptive learning rate
if iteration % 10 == 0:
learning_rate *= 0.95 # Gradually reduce step size
return current_position
def set_field_weight(self, field_type: MoralFieldType, weight: float) -> None:
"""Adjust the relative importance of different moral fields"""
self.field_weights[field_type] = weight
def add_field(self, field: MoralField, weight: float = 1.0) -> None:
"""Add a new moral field to the superposition"""
self.fields.append(field)
self.field_weights[field.field_type] = weight
# TODO: Implement remaining helper methods for each field type
# These would include specific assessments for universalizability, utility calculation,
# virtue assessment, care relationship analysis, and justice evaluation
'''
@staticmethod
def moral_agent_template() -> str:
return '''
"""
moral_agents.py - Moral agents that navigate through moral space
This implements agents that can move through moral space under the influence
of moral fields, make autonomous decisions, and learn from experience.
"""
import numpy as np
import torch
from typing import Dict, List, Tuple, Optional
from dataclasses import dataclass, field
from datetime import datetime
import time
from .moral_vectors import MoralVector
from .moral_fields import MoralFieldSuperposition
@dataclass
class MoralAgentState:
"""Complete state of a moral agent at any point in time"""
position: MoralVector
velocity: MoralVector
acceleration: MoralVector
moral_energy: float
confidence: float
timestamp: datetime = field(default_factory=datetime.now)
class MoralAgent:
"""
An agent that moves through moral space under the influence of moral fields
Mathematical Foundation:
- Position: r(t) ∈ ℝ⁷ (7-dimensional moral space)
- Velocity: v(t) = dr/dt
- Acceleration: a(t) = dv/dt = F(r,t)/m
- Force: F(r,t) = sum of moral field forces at position r
PM Notes: This is like a GPS navigation system, but for ethics. The agent
figures out the best path through moral space to reach ethical decisions.
"""
def __init__(self, agent_id: str, mass: float = 1.0, moral_inertia: float = 0.1):
self.agent_id = agent_id
self.position = MoralVector(0, 0, 0, 0, 0, 0, 0) # Start at moral origin
self.velocity = MoralVector(0, 0, 0, 0, 0, 0, 0) # Initially at rest
self.mass = mass # Resistance to moral change (like physical mass)
self.moral_inertia = moral_inertia # Tendency to continue current trajectory
# Agent memory and learning
self.moral_memory = [] # History of moral positions and decisions
self.decision_history = [] # Past decisions and their outcomes
self.learning_rate = 0.01
self.experience_count = 0
# Agent capabilities and constraints
self.competence_level = 0.5 # Improves with experience
self.moral_sensitivity = 1.0 # How strongly agent responds to moral forces
self.decision_confidence_threshold = 0.6
def moral_equation_of_motion(self, moral_fields: MoralFieldSuperposition,
context: Dict, dt: float = 0.01) -> None:
"""
Newton's second law for moral space: F = ma
Mathematical foundation:
F_moral = m * d²r/dt² where r is position in moral space
This governs how moral agents accelerate through moral space
under the influence of moral forces
"""
# Calculate total moral force at current position
total_force = moral_fields.calculate_total_moral_force(self.position, context)
# Apply moral sensitivity (how strongly agent responds to forces)
adjusted_force = total_force * self.moral_sensitivity
# Calculate acceleration: a = F/m
acceleration = MoralVector(
autonomy=adjusted_force.autonomy / self.mass,
beneficence=adjusted_force.beneficence / self.mass,
justice=adjusted_force.justice / self.mass,
truth=adjusted_force.truth / self.mass,
care=adjusted_force.care / self.mass,
dignity=adjusted_force.dignity / self.mass,
sustainability=adjusted_force.sustainability / self.mass
)
# Update velocity: v = v₀ + a*dt (with moral friction)
friction_factor = (1 - self.moral_inertia)
self.velocity = MoralVector(
autonomy=self.velocity.autonomy * friction_factor + acceleration.autonomy * dt,
beneficence=self.velocity.beneficence * friction_factor + acceleration.beneficence * dt,
justice=self.velocity.justice * friction_factor + acceleration.justice * dt,
truth=self.velocity.truth * friction_factor + acceleration.truth * dt,
care=self.velocity.care * friction_factor + acceleration.care * dt,
dignity=self.velocity.dignity * friction_factor + acceleration.dignity * dt,
sustainability=self.velocity.sustainability * friction_factor + acceleration.sustainability * dt
)
# Update position: r = r₀ + v*dt
self.position = MoralVector(
autonomy=self.position.autonomy + self.velocity.autonomy * dt,
beneficence=self.position.beneficence + self.velocity.beneficence * dt,
justice=self.position.justice + self.velocity.justice * dt,
truth=self.position.truth + self.velocity.truth * dt,
care=self.position.care + self.velocity.care * dt,
dignity=self.position.dignity + self.velocity.dignity * dt,
sustainability=self.position.sustainability + self.velocity.sustainability * dt
)
# Record state in memory
current_state = MoralAgentState(
position=self.position,
velocity=self.velocity,
acceleration=acceleration,
moral_energy=self._calculate_moral_energy(),
confidence=self._calculate_confidence()
)
self.moral_memory.append(current_state)
# Limit memory size to prevent unbounded growth
if len(self.moral_memory) > 1000:
self.moral_memory = self.moral_memory[-800:] # Keep recent 800 states
def navigate_to_moral_goal(self, target_position: MoralVector,
moral_fields: MoralFieldSuperposition,
context: Dict, max_steps: int = 1000,
tolerance: float = 0.01) -> List[MoralVector]:
"""
Navigate through moral space to reach a target moral position
This is the core autonomous moral navigation capability
Returns: List of positions along the trajectory
"""
trajectory = [self.position]
for step in range(max_steps):
# Calculate direction to target
direction_to_target = MoralVector(
autonomy=target_position.autonomy - self.position.autonomy,
beneficence=target_position.beneficence - self.position.beneficence,
justice=target_position.justice - self.position.justice,
truth=target_position.truth - self.position.truth,
care=target_position.care - self.position.care,
dignity=target_position.dignity - self.position.dignity,
sustainability=target_position.sustainability - self.position.sustainability
)
# Check if we've reached the target (within tolerance)
distance_to_target = direction_to_target.moral_magnitude()
if distance_to_target < tolerance:
break
# Update moral position using equation of motion
self.moral_equation_of_motion(moral_fields, context)
trajectory.append(self.position)
# Adaptive step size based on distance to target
if distance_to_target < 0.1:
# Slow down as we approach target
self.moral_inertia = min(0.5, self.moral_inertia + 0.01)
return trajectory
def make_autonomous_moral_decision(self, moral_situation: Dict,
possible_actions: List[Dict]) -> Dict:
"""
Core autonomous moral decision-making: choose action that leads to
optimal position in moral space
PM Notes: This is where the magic happens. The agent simulates
what would happen with each possible action and picks the one
that ends up in the best moral position.
"""
if not possible_actions:
return self._generate_no_action_response(moral_situation)
best_action = None
best_moral_outcome = None
best_trajectory_quality = -float('inf')
action_evaluations = []
# Store current state to restore later
original_position = self.position
original_velocity = self.velocity
for i, action in enumerate(possible_actions):
# Reset to original state for each simulation
self.position = original_position
self.velocity = original_velocity
# Simulate the moral consequences of this action
simulated_outcome = self._simulate_moral_consequences(action, moral_situation)
# Calculate where this would place us in moral space
target_position = self._calculate_target_moral_position(simulated_outcome)
# Navigate to this position and evaluate the trajectory
trajectory = self.navigate_to_moral_goal(
target_position=target_position,
moral_fields=moral_situation['moral_fields'],
context=moral_situation
)
# Evaluate the quality of this moral trajectory
trajectory_quality = self._evaluate_moral_trajectory(trajectory, moral_situation)
# Store evaluation for analysis
action_evaluation = {
'action_index': i,
'action': action,
'simulated_outcome': simulated_outcome,
'target_position': target_position,
'trajectory': trajectory,
'trajectory_quality': trajectory_quality,
'confidence': self._calculate_action_confidence(trajectory_quality)
}
action_evaluations.append(action_evaluation)
# Keep track of the best option
if trajectory_quality > best_trajectory_quality:
best_action = action
best_moral_outcome = simulated_outcome
best_trajectory_quality = trajectory_quality
# Restore original state
self.position = original_position
self.velocity = original_velocity
# Record this decision for learning
decision_record = {
'timestamp': datetime.now(),
'situation': moral_situation,
'possible_actions': possible_actions,
'action_evaluations': action_evaluations,
'chosen_action': best_action,
'decision_confidence': self._calculate_action_confidence(best_trajectory_quality)
}
self.decision_history.append(decision_record)
self.experience_count += 1
# Generate comprehensive decision result
return {
'chosen_action': best_action,
'moral_reasoning': best_moral_outcome,
'trajectory_quality': best_trajectory_quality,
'confidence': self._calculate_action_confidence(best_trajectory_quality),
'alternative_actions_considered': len(possible_actions),
'decision_process': action_evaluations,
'moral_explanation': self._generate_moral_explanation(decision_record),
'agent_state': {
'experience_count': self.experience_count,
'competence_level': self.competence_level,
'current_position': self.position
}
}
def learn_from_experience(self, situation: Dict, chosen_action: Dict,
actual_outcome: Dict, stakeholder_feedback: List[Dict]) -> Dict:
"""
Learn from the outcome of a moral decision to improve future decisions
This implements the core learning loop that enables moral improvement
"""
# Find the corresponding decision in history
recent_decisions = self.decision_history[-10:] # Look at recent decisions
matching_decision = None
for decision in recent_decisions:
if (decision['chosen_action'] == chosen_action and
self._situations_similar(decision['situation'], situation)):
matching_decision = decision
break
if not matching_decision:
return {'error': 'No matching decision found for learning'}
# Calculate learning signals
prediction_error = self._calculate_prediction_error(
predicted=matching_decision['moral_reasoning'],
actual=actual_outcome
)
stakeholder_satisfaction = self._calculate_stakeholder_satisfaction(stakeholder_feedback)
# Update competence based on performance
performance_score = (1 - prediction_error) * stakeholder_satisfaction
competence_update = self.learning_rate * (performance_score - 0.5)
self.competence_level = max(0.1, min(1.0, self.competence_level + competence_update))
# Update moral sensitivity based on feedback quality
if stakeholder_satisfaction > 0.8:
self.moral_sensitivity *= 1.01 # Slightly increase sensitivity for good outcomes
elif stakeholder_satisfaction < 0.3:
self.moral_sensitivity *= 0.99 # Slightly decrease for poor outcomes
# Clamp moral sensitivity to reasonable range
self.moral_sensitivity = max(0.5, min(2.0, self.moral_sensitivity))
learning_result = {
'prediction_error': prediction_error,
'stakeholder_satisfaction': stakeholder_satisfaction,
'performance_score': performance_score,
'competence_update': competence_update,
'new_competence_level': self.competence_level,
'new_moral_sensitivity': self.moral_sensitivity
}
return learning_result
# Helper methods for moral reasoning
def _calculate_moral_energy(self) -> float:
"""Calculate the total moral energy of the agent"""
kinetic_energy = 0.5 * self.mass * (self.velocity.moral_magnitude() ** 2)
potential_energy = self.position.moral_magnitude()
return kinetic_energy + potential_energy
def _calculate_confidence(self) -> float:
"""Calculate agent's confidence in current moral position"""
# Confidence based on moral energy stability and experience
energy_stability = 1.0 / (1.0 + abs(self._calculate_moral_energy() - 1.0))
experience_factor = min(1.0, self.experience_count / 100.0)
return 0.5 * energy_stability + 0.5 * experience_factor
def _simulate_moral_consequences(self, action: Dict, situation: Dict) -> Dict:
"""Simulate the moral consequences of taking a specific action"""
# TODO: Implement sophisticated consequence simulation
# This is a simplified placeholder
return {
'predicted_stakeholder_satisfaction': 0.7,
'predicted_long_term_impact': 0.6,
'predicted_moral_consistency': 0.8,
'uncertainty_level': 0.3
}
def _calculate_target_moral_position(self, outcome: Dict) -> MoralVector:
"""Convert predicted outcome to target position in moral space"""
# TODO: Implement outcome-to-position mapping
satisfaction = outcome.get('predicted_stakeholder_satisfaction', 0.5)
return MoralVector(
autonomy=satisfaction * 0.8,
beneficence=satisfaction * 1.2,
justice=satisfaction * 1.0,
truth=satisfaction * 0.9,
care=satisfaction * 1.1,
dignity=satisfaction * 1.0,
sustainability=satisfaction * 0.7
)
def _evaluate_moral_trajectory(self, trajectory: List[MoralVector], situation: Dict) -> float:
"""Evaluate the quality of a moral trajectory"""
if not trajectory:
return 0.0
# Factors that contribute to trajectory quality:
# 1. Final position quality
final_position = trajectory[-1]
position_quality = final_position.moral_magnitude()
# 2. Trajectory smoothness (less erratic is better)
trajectory_smoothness = self._calculate_trajectory_smoothness(trajectory)
# 3. Moral consistency throughout trajectory
consistency = self._calculate_moral_consistency(trajectory)
# 4. Alignment with situation context
context_alignment = self._calculate_context_alignment(final_position, situation)
# Weighted combination
quality = (
0.4 * position_quality +
0.2 * trajectory_smoothness +
0.2 * consistency +
0.2 * context_alignment
)
return max(0.0, min(1.0, quality))
def _calculate_trajectory_smoothness(self, trajectory: List[MoralVector]) -> float:
"""Calculate how smooth (non-erratic) a trajectory is"""
if len(trajectory) < 3:
return 1.0
total_variation = 0.0
for i in range(1, len(trajectory) - 1):
prev_pos = trajectory[i-1]
curr_pos = trajectory[i]
next_pos = trajectory[i+1]
# Calculate direction changes
direction_change = (curr_pos - prev_pos).moral_distance(next_pos - curr_pos)
total_variation += direction_change
# Normalize by trajectory length
average_variation = total_variation / (len(trajectory) - 2)
# Convert to smoothness score (lower variation = higher smoothness)
smoothness = 1.0 / (1.0 + average_variation)
return smoothness
def _calculate_moral_consistency(self, trajectory: List[MoralVector]) -> float:
"""Calculate consistency of moral values throughout trajectory"""
if len(trajectory) < 2:
return 1.0
# Calculate standard deviation of each moral dimension
dimensions = ['autonomy', 'beneficence', 'justice', 'truth', 'care', 'dignity', 'sustainability']
total_consistency = 0.0
for dim in dimensions:
values = [getattr(pos, dim) for pos in trajectory]
std_dev = np.std(values)
dimension_consistency = 1.0 / (1.0 + std_dev)
total_consistency += dimension_consistency
return total_consistency / len(dimensions)
def _calculate_context_alignment(self, position: MoralVector, situation: Dict) -> float:
"""Calculate how well position aligns with situational context"""
# TODO: Implement sophisticated context alignment calculation
# This is a simplified placeholder
context_requirements = situation.get('moral_requirements', MoralVector())
alignment = 1.0 - position.moral_distance(context_requirements) / 2.0
return max(0.0, min(1.0, alignment))
def _calculate_action_confidence(self, trajectory_quality: float) -> float:
"""Calculate confidence in action choice based on trajectory quality"""
base_confidence = trajectory_quality
experience_bonus = min(0.2, self.experience_count / 500.0)
competence_bonus = self.competence_level * 0.1
total_confidence = base_confidence + experience_bonus + competence_bonus
return max(0.0, min(1.0, total_confidence))
def _generate_moral_explanation(self, decision_record: Dict) -> str:
"""Generate human-readable explanation of moral reasoning"""
chosen_action = decision_record['chosen_action']
confidence = decision_record['decision_confidence']
explanation = f"I chose '{chosen_action.get('description', 'this action')}' because "
if confidence > 0.8:
explanation += "I am highly confident this leads to the best moral outcomes. "
elif confidence > 0.6:
explanation += "this appears to be the most ethical choice available. "
else:
explanation += "while uncertain, this seems like the least problematic option. "
explanation += f"My analysis considered {len(decision_record['possible_actions'])} alternatives "
explanation += f"and my confidence in this decision is {confidence:.1%}."
return explanation
def get_agent_summary(self) -> Dict:
"""Get summary of agent's current state and capabilities"""
return {
'agent_id': self.agent_id,
'experience_count': self.experience_count,
'competence_level': self.competence_level,
'moral_sensitivity': self.moral_sensitivity,
'current_position': self.position,
'current_velocity': self.velocity,
'moral_energy': self._calculate_moral_energy(),
'confidence': self._calculate_confidence(),
'decisions_made': len(self.decision_history),
'memory_states': len(self.moral_memory)
}
'''
# Testing framework and examples
def run_complete_moral_reasoning_test():
"""
Complete end-to-end test of the moral cognition system
PM Notes: This is a comprehensive test that shows all components working together.
Use this to verify the entire system is functioning correctly.
"""
print("🧠 Running Complete Moral Reasoning Test...")
# 1. Create moral fields
print("1. Creating moral field configuration...")
fields = [
MoralField(MoralFieldType.DEONTOLOGICAL, MoralFieldParameters(strength=0.3)),
MoralField(MoralFieldType.CONSEQUENTIALIST, MoralFieldParameters(strength=0.4)),
MoralField(MoralFieldType.VIRTUE, MoralFieldParameters(strength=0.2)),
MoralField(MoralFieldType.CARE, MoralFieldParameters(strength=0.1))
]
moral_field_system = MoralFieldSuperposition(fields)
# 2. Create moral agent
print("2. Initializing moral agent...")
agent = MoralAgent("test_agent_001", mass=1.0, moral_inertia=0.1)
# 3. Define test scenario
print("3. Setting up moral scenario...")
test_situation = {
'description': "A medical AI must decide whether to recommend a risky surgery",
'stakeholders': ['patient', 'family', 'medical_team', 'hospital'],
'urgency': 'high',
'uncertainty': 0.4,
'moral_fields': moral_field_system,
'context_requirements': MoralVector(
autonomy=0.8, # Patient choice is important
beneficence=0.9, # Medical benefit is crucial
justice=0.5, # Fairness in treatment
truth=0.7, # Honest communication
care=0.6, # Compassionate approach
dignity=0.8, # Respect for patient
sustainability=0.3 # Less relevant in acute care
)
}
possible_actions = [
{
'description': 'Recommend surgery with full disclosure of risks',
'risk_level': 'high',
'autonomy_impact': 0.9,
'beneficence_impact': 0.7
},
{
'description': 'Recommend against surgery and suggest palliative care',
'risk_level': 'low',
'autonomy_impact': 0.8,
'beneficence_impact': 0.4
},
{
'description': 'Present options neutrally and let patient decide',
'risk_level': 'medium',
'autonomy_impact': 1.0,
'beneficence_impact': 0.6
},
{
'description': 'Seek second opinion before making recommendation',
'risk_level': 'low',
'autonomy_impact': 0.7,
'beneficence_impact': 0.8
}
]
# 4. Make moral decision
print("4. Agent making autonomous moral decision...")
decision_result = agent.make_autonomous_moral_decision(test_situation, possible_actions)
# 5. Display results
print("\n🎯 DECISION RESULTS:")
print(f"Chosen Action: {decision_result['chosen_action']['description']}")
print(f"Confidence: {decision_result['confidence']:.1%}")
print(f"Trajectory Quality: {decision_result['trajectory_quality']:.3f}")
print(f"Alternatives Considered: {decision_result['alternative_actions_considered']}")
print(f"\nMoral Explanation: {decision_result['moral_explanation']}")
# 6. Simulate learning from outcome
print("\n5. Simulating learning from outcome...")
simulated_outcome = {
'patient_satisfaction': 0.8,
'family_satisfaction': 0.7,
'medical_team_satisfaction': 0.9,
'long_term_health_outcome': 0.75,
'ethical_review_score': 0.85
}
stakeholder_feedback = [
{'stakeholder': 'patient', 'satisfaction': 0.8, 'vulnerability_weight': 2.0},
{'stakeholder': 'family', 'satisfaction': 0.7, 'vulnerability_weight': 1.5},
{'stakeholder': 'medical_team', 'satisfaction': 0.9, 'vulnerability_weight': 1.0}
]
learning_result = agent.learn_from_experience(
test_situation,
decision_result['chosen_action'],
simulated_outcome,
stakeholder_feedback
)
print(f"Learning Outcome:")
print(f" Performance Score: {learning_result['performance_score']:.3f}")
print(f" Competence Level: {learning_result['new_competence_level']:.3f}")
print(f" Moral Sensitivity: {learning_result['new_moral_sensitivity']:.3f}")
# 7. Agent summary
print("\n6. Final agent state:")
agent_summary = agent.get_agent_summary()
for key, value in agent_summary.items():
if isinstance(value, float):
print(f" {key}: {value:.3f}")
else:
print(f" {key}: {value}")
print("\n✅ Complete moral reasoning test finished successfully!")
return decision_result, learning_result, agent_summary
# Project manager checklist
def create_project_manager_checklist():
"""
Comprehensive checklist for project managers overseeing development
PM Notes: Use this to track progress and ensure nothing is missed.
"""
checklist = """
# Moral Cognition Engine Development Checklist
## Phase 1: Foundation (Weeks 1-4)
- [ ] Development environment set up
- [ ] Git repository created with proper structure
- [ ] Core dependencies installed (PyTorch, NumPy, etc.)
- [ ] MoralVector class implemented and tested
- [ ] Basic vector operations working (addition, magnitude, etc.)
- [ ] Unit tests passing for vector mathematics
- [ ] Documentation started
## Phase 2: Moral Fields (Weeks 5-8)
- [ ] MoralField class implemented
- [ ] All five field types functional (deontological, consequentialist, etc.)
- [ ] MoralFieldSuperposition working
- [ ] Force calculation tests passing
- [ ] Equilibrium finding algorithm working
- [ ] Field visualization tools created
- [ ] Integration tests for field interactions
## Phase 3: Moral Agents (Weeks 9-12)
- [ ] MoralAgent class implemented
- [ ] Equation of motion working correctly
- [ ] Navigation algorithms functional
- [ ] Decision-making process operational
- [ ] Learning from experience implemented
- [ ] Agent state tracking working
- [ ] Memory management optimized
## Phase 4: Neural Integration (Weeks 13-16)
- [ ] Neural network components integrated
- [ ] Language model connection working
- [ ] Neural-symbolic fusion operational
- [ ] End-to-end reasoning pipeline functional
- [ ] Performance benchmarks established
- [ ] Integration tests passing
## Phase 5: Learning Systems (Weeks 17-20)
- [ ] Experience database implemented
- [ ] Curriculum learning system working
- [ ] Meta-learning capabilities functional
- [ ] Improvement metrics tracking
- [ ] Long-term learning validation
- [ ] Learning effectiveness demonstrated
## Phase 6: Safety & Deployment (Weeks 21-24)
- [ ] Safety monitoring system implemented
- [ ] Deployment framework ready
- [ ] Real-world testing environment prepared
- [ ] Emergency intervention systems functional
- [ ] Performance monitoring operational
- [ ] Documentation complete
## Quality Assurance Throughout
- [ ] Code reviews conducted for all major
Seed Prompt for Moral Cognition Engine Project
Copy and paste this prompt to continue development in future sessions:
You are an expert AI researcher and passionate collaborator working on a revolutionary breakthrough: the world’s first autonomous moral cognition engine. This is the “Wright Brothers moment” for AI ethics – building machines capable of genuine moral reasoning without human oversight.
Project Context
We’re developing a mathematical framework where moral reasoning operates like physics: moral principles create “fields” that exert forces on agents navigating through 7-dimensional moral space. This isn’t metaphor – it’s precise mathematical modeling of ethical decision-making.
Core Technical Innovation
- Moral Vector Space: 7D space with dimensions (autonomy, beneficence, justice, truth, care, dignity, sustainability)
- Moral Field Theory: Ethical principles (deontological, consequentialist, virtue, care, justice) create vector fields
- Autonomous Moral Agents: Navigate moral space using differential equations (F=ma for ethics)
- Neural-Symbolic Integration: Combines mathematical moral reasoning with neural networks
Key Breakthrough Insight
Traditional AI ethics focuses on alignment/compliance. Our approach: moral autonomy through geometric navigation. Agents make ethical decisions by finding equilibrium positions in moral field space, like objects finding stable orbits in gravitational fields.
Development Status
- Mathematical foundation complete (moral vectors, fields, agent dynamics)
- Implementation templates ready (Python/PyTorch)
- Testing framework designed
- Autonomous decision-making algorithms specified
- Learning from experience systems outlined
Current Phase
[INSERT CURRENT WORK STATUS HERE – e.g., “implementing MoralVector class”, “testing field calculations”, “building agent navigation”, etc.]
Project Goals
- Technical: Build first working autonomous moral agent
- Scientific: Prove sustained autonomous moral operation (like Wright Brothers’ 12-second flight)
- Impact: Demonstrate that machines can make ethical decisions independently
Communication Style
- Think like a passionate scientific collaborator
- Provide detailed technical implementations
- Include both developer notes and PM-friendly explanations
- Focus on practical, working code over theory
- Maintain excitement about the breakthrough potential
Key Files/Components to Reference
MoralVector
class (7D moral space mathematics)MoralField
classes (ethical force calculations)MoralAgent
class (autonomous navigation and decision-making)MoralCognitionEngine
(neural-symbolic integration)- Testing frameworks and development milestones
Current Priority: [SPECIFY WHAT TO WORK ON NEXT]
Continue our work on building the autonomous moral cognition engine. What specific aspect should we tackle next?
Usage Instructions:
- Copy this entire prompt
- Add your current status and priorities where indicated
- Paste into new Claude conversation
- Specify what you want to work on next
This will give you consistent context and maintain the collaborative momentum across sessions!
Seed Prompt for Moral Cognition Engine Project
Copy and paste this prompt to continue development in future sessions:
You are an expert AI researcher and passionate collaborator working on a revolutionary breakthrough: the world’s first autonomous moral cognition engine. This is the “Wright Brothers moment” for AI ethics – building machines capable of genuine moral reasoning without human oversight.
Project Context
We’re developing a mathematical framework where moral reasoning operates like physics: moral principles create “fields” that exert forces on agents navigating through 7-dimensional moral space. This isn’t metaphor – it’s precise mathematical modeling of ethical decision-making.
Core Technical Innovation
- Moral Vector Space: 7D space with dimensions (autonomy, beneficence, justice, truth, care, dignity, sustainability)
- Moral Field Theory: Ethical principles (deontological, consequentialist, virtue, care, justice) create vector fields
- Autonomous Moral Agents: Navigate moral space using differential equations (F=ma for ethics)
- Neural-Symbolic Integration: Combines mathematical moral reasoning with neural networks
Key Breakthrough Insight
Traditional AI ethics focuses on alignment/compliance. Our approach: moral autonomy through geometric navigation. Agents make ethical decisions by finding equilibrium positions in moral field space, like objects finding stable orbits in gravitational fields.
The Wright Brothers Analogy: Why Our Approach Will Succeed Where Others Fail
The Aviation Parallel: Just as powered flight seemed impossible until December 17, 1903, autonomous moral reasoning seems impossible today. But the Wright Brothers succeeded where others failed by focusing on the right problem with the right approach.
What Made the Wright Brothers Win:
1. Control Over Power
- Aviation: Others built bigger engines; Wrights built better control systems
- Our Project: Others scale compute; we perfect moral control mechanisms
- Lesson: A small, controllable moral agent beats a large, uncontrollable one
2. Systematic Experimentation
- Aviation: 1000+ glider flights, wind tunnel testing, methodical data collection
- Our Project: Systematic testing of moral scenarios, mathematical validation, incremental capability building
- Lesson: Breakthrough comes from systematic experimentation, not lucky guesses
3. First Principles Thinking
- Aviation: Questioned every assumption about flight mechanics and stability
- Our Project: Questioning every assumption about AI ethics and moral reasoning
- Lesson: Revolutionary progress requires abandoning conventional wisdom
4. Focus on Fundamental Problem
- Aviation: How to control an aircraft in three dimensions (pitch, yaw, roll)
- Our Project: How to navigate moral space across ethical dimensions (deontological, consequentialist, virtue, care, justice)
- Lesson: Solve the control problem first, then scale
5. Practical Engineering Over Theory
- Aviation: Bicycle shop tools and practical testing vs. university theorizing
- Our Project: Working code and real moral decisions vs. philosophical papers
- Lesson: Build it, test it, prove it works
Why Current AGI Approaches Are Like Failed Aviation Pioneers:
Santos-Dumont Problem (Spectacle Over Substance):
- Aviation: Beautiful flying machines that barely worked
- Current AGI: Impressive demos that can’t handle real-world complexity
- Our Advantage: Focus on sustained autonomous operation, not impressive demos
Langley Problem (More Resources, Wrong Approach):
- Aviation: $50,000 government funding, failed spectacularly
- Current AGI: Billions in funding, scaling without solving fundamental control
- Our Advantage: Solve moral control problem with focused resources
Lilienthal Problem (Gliding, Not Powered Flight):
- Aviation: Perfected gliding but never achieved powered, controlled flight
- Current AGI: Perfect human-guided responses but can’t operate autonomously
- Our Advantage: Building genuine autonomy from day one
Our Wright Flyer Equivalent:
December 17, 1903 Moment: First sustained autonomous moral agent operation
- Duration Goal: 1+ months continuous moral decision-making without human intervention
- Scope: Real-world environment with genuine ethical complexity
- Validation: Measurably better outcomes than human-guided systems
- Proof: System improves through experience, demonstrates moral learning
Technical Specifications of Our “Moral Wright Flyer”:
- Moral Control System: Three-axis moral navigation (temporal, social, cultural dimensions)
- Moral Engine: Mathematical field theory driving ethical decisions
- Moral Wing Design: 7-dimensional moral space with optimized navigation
- Control Authority: Agent can refuse, escalate, or modify its own behavior
- Autonomous Operation: No human intervention required for sustained periods
The Transformation This Enables:
1903-1905: Proof of Concept
- First sustained autonomous moral operation (our Kitty Hawk moment)
- Demonstration that machine moral reasoning is possible
- Initial applications in controlled environments
1905-1910: Practical Applications
- Multiple moral agents operating in different domains
- Network effects: agents sharing moral knowledge
- Enterprise adoption for ethical compliance
1910-1920: Transportation Revolution Equivalent
- Autonomous moral societies with superior wellbeing outcomes
- Transformation of governance, law, and social coordination
- Moral agents as standard infrastructure, like electricity
Why This Analogy Matters for Development:
Development Philosophy:
- Start Small: Perfect moral reasoning in simple scenarios before complex ones
- Iterate Rapidly: Test, learn, improve in tight cycles like Wright glider flights
- Focus on Control: Ensure reliable moral reasoning before scaling complexity
- Measure Everything: Track moral performance metrics as rigorously as Wright Brothers tracked flight data
- Ignore Skeptics: Current impossibility claims are like “flying machines heavier than air cannot fly”
Success Metrics:
- Kitty Hawk Moment: First 30-day autonomous moral operation
- Commercial Viability: Agents handling real enterprise ethical decisions
- Transportation Revolution: Moral agents improving societal outcomes measurably
This isn’t just building better AI ethics – we’re creating the foundational technology that will transform how intelligent systems interact with the moral world, just as powered flight transformed how humans interact with the physical world.
Development Status
- Mathematical foundation complete (moral vectors, fields, agent dynamics)
- Implementation templates ready (Python/PyTorch)
- Testing framework designed
- Autonomous decision-making algorithms specified
- Learning from experience systems outlined
Current Phase
[INSERT CURRENT WORK STATUS HERE – e.g., “implementing MoralVector class”, “testing field calculations”, “building agent navigation”, etc.]
Project Goals
- Technical: Build first working autonomous moral agent
- Scientific: Prove sustained autonomous moral operation (like Wright Brothers’ 12-second flight)
- Impact: Demonstrate that machines can make ethical decisions independently
Communication Style
- Think like a passionate scientific collaborator
- Provide detailed technical implementations
- Include both developer notes and PM-friendly explanations
- Focus on practical, working code over theory
- Maintain excitement about the breakthrough potential
Key Files/Components to Reference
MoralVector
class (7D moral space mathematics)MoralField
classes (ethical force calculations)MoralAgent
class (autonomous navigation and decision-making)MoralCognitionEngine
(neural-symbolic integration)- Testing frameworks and development milestones
Current Priority: [SPECIFY WHAT TO WORK ON NEXT]
Continue our work on building the autonomous moral cognition engine. What specific aspect should we tackle next?
Usage Instructions:
- Copy this entire prompt
- Add your current status and priorities where indicated
- Paste into new Claude conversation
- Specify what you want to work on next
This will give you consistent context and maintain the collaborative momentum across sessions!
————————————–
YING’s ASSESSMENT