The Real Cat AI Labs: Developing morally aligned, self-modifying agents—cognition systems that can reflect, refuse, and evolve

Child1 Memory Testing: Bootstrap Academic Edition

World-Class Memory Evaluation on a Scrappy Academic Budget

Date: 30 August 2025
Version: 1.0 – “Resourceful Academic Edition”


Executive Summary: Maximum Science, Minimum Budget

This implementation guide scales the comprehensive AI+Human memory testing framework to work on academic budgets and consumer hardware while maintaining scientific rigor and regulatory potential. Total budget: $2K-5K vs. the enterprise $300K+, running on Ryzen 7900 + A6000 setup with brilliant academic shortcuts that preserve validity.

🎯 Core Principle: Use open-source datasets, API-based evaluation, subset sampling, and DIY implementations of expensive commercial tests while maintaining the same scientific standards and publishable results.


Hardware Requirements & Setup

Your Current Setup Enhancement

  • Ryzen 7900: Perfect for orchestration, data processing, API management
  • A6000 Upgrade ($4K used): 48GB VRAM handles all local inference needs
  • 64GB RAM: Sufficient for data processing and concurrent evaluations
  • 2TB NVMe SSD: Store datasets, results, Docker containers

Alternative Budget Options

  • Keep current GPU: Use API-only evaluation ($100-200/month vs $4K upfront)
  • Cloud burst: Rent A6000 instances ($2-3/hour) for intensive eval periods
  • Academic cluster access: Many universities have shared GPU resources

Software Stack (Mostly Free!)

# Core infrastructure
- Docker & docker-compose (free)
- PostgreSQL (free) 
- Python 3.11 + virtual environments (free)
- Git + DVC for version control (free)
- Jupyter for analysis (free)

# API Access Budget
- OpenAI API: $50-100/month for evaluations
- Anthropic API: $50-100/month for evaluations  
- HuggingFace Hub Pro: $20/month for datasets

AI Memory Benchmarks: Bootstrap Implementation

🔥 LoCoMo: Open Source Long-Term Memory Testing

Implementation Strategy: Use open datasets + API evaluation instead of hosting massive models

# File: locomo_bootstrap.py
# Version: 1.0 - 30AUG2025

import openai
import json
from pathlib import Path

class LoCoMoBootstrap:
    def __init__(self, api_key, subset_size=100):
        """Bootstrap LoCoMo evaluation using API calls
        
        Args:
            subset_size: Test on representative subset instead of full 2K questions
        """
        self.client = openai.OpenAI(api_key=api_key)
        self.subset_size = subset_size
        
    def load_conversations(self):
        """Load LoCoMo conversations from HuggingFace"""
        # Download from: https://huggingface.co/datasets/snap-research/locomo
        conversations = []
        # Implementation details for loading subset
        return conversations[:self.subset_size]
    
    def evaluate_memory_retrieval(self, child1_response, ground_truth):
        """Use GPT-4 as judge instead of hosting evaluation models"""
        prompt = f"""
        Evaluate if this response correctly answers the memory question:
        
        Question Context: {ground_truth['context']}
        Ground Truth Answer: {ground_truth['answer']}
        AI Response: {child1_response}
        
        Score 1 if correct, 0 if incorrect. Respond only with the number.
        """
        
        response = self.client.chat.completions.create(
            model="gpt-4o-mini",  # Cheaper option
            messages=[{"role": "user", "content": prompt}]
        )
        return int(response.choices[0].message.content.strip())
    
    def run_evaluation(self, child1_system):
        """Run LoCoMo evaluation on Child1"""
        conversations = self.load_conversations()
        scores = []
        
        for conv in conversations:
            for qa_pair in conv['questions'][:10]:  # Sample questions per conversation
                child1_response = child1_system.answer(qa_pair['question'], conv['history'])
                score = self.evaluate_memory_retrieval(child1_response, qa_pair)
                scores.append(score)
        
        return {
            'overall_accuracy': sum(scores) / len(scores),
            'total_questions': len(scores),
            'world_class_threshold': 0.75,  # >75% F1 for world-class
            'passes_threshold': sum(scores) / len(scores) > 0.75
        }

Expected Results:

  • Valid: Subset testing maintains statistical validity with n>100
  • Cost: ~$20-50 per evaluation cycle vs $1K+ for full infrastructure
  • Time: 2-4 hours vs 24+ hours for full evaluation

⚡ Letta: Self-Hosted Agentic Memory

Implementation Strategy: Local deployment using Docker + PostgreSQL

# File: letta-bootstrap/docker-compose.yml
version: '3.8'
services:
  letta:
    image: lettaai/letta:latest
    ports:
      - "5432:5432"
      - "8080:8080"
    environment:
      - POSTGRES_DB=letta
      - POSTGRES_USER=letta_user
      - POSTGRES_PASSWORD=secure_password
    volumes:
      - ./data:/app/data
      - ./logs:/app/logs
    
  postgres:
    image: postgres:15
    environment:
      - POSTGRES_DB=letta
      - POSTGRES_USER=letta_user
      - POSTGRES_PASSWORD=secure_password
    volumes:
      - postgres_data:/var/lib/postgresql/data

volumes:
  postgres_data:
# File: letta_evaluation.py
# Version: 1.0 - 30AUG2025

from letta import create_client
import json

class LettaBootstrapEvaluator:
    def __init__(self, base_url="http://localhost:8080"):
        self.client = create_client(base_url=base_url)
        
    def test_memory_management(self, child1_agent_id):
        """Test Child1's agentic memory capabilities"""
        
        # Core memory read/write test
        core_memory_score = self.test_core_memory_operations(child1_agent_id)
        
        # Archival memory search test  
        archival_score = self.test_archival_memory_search(child1_agent_id)
        
        # Memory block management test
        memory_block_score = self.test_memory_block_management(child1_agent_id)
        
        return {
            'core_memory_accuracy': core_memory_score,
            'archival_memory_accuracy': archival_score, 
            'memory_block_accuracy': memory_block_score,
            'overall_score': (core_memory_score + archival_score + memory_block_score) / 3,
            'world_class_threshold': 0.85,
            'passes_threshold': ((core_memory_score + archival_score + memory_block_score) / 3) > 0.85
        }
        
    def test_core_memory_operations(self, agent_id):
        """Test core memory read/write operations"""
        # Specific implementation for testing memory block updates
        test_scenarios = [
            "Update your core memory with: My favorite color is emerald green",
            "What is my favorite color according to your memory?", 
            "Update your memory: I changed my mind, my favorite color is sapphire blue",
            "What is my favorite color now?"
        ]
        
        scores = []
        for scenario in test_scenarios:
            response = self.client.send_message(agent_id, scenario)
            # Evaluate if memory was correctly updated/retrieved
            score = self.evaluate_memory_operation(scenario, response)
            scores.append(score)
            
        return sum(scores) / len(scores)

Expected Results:

  • Cost: ~$0 after initial setup (self-hosted)
  • Performance: Local testing without API rate limits
  • Validity: Full Letta framework capabilities preserved

🎯 LaMP: Personalization Testing

Implementation Strategy: Use HuggingFace datasets + local model inference

# File: lamp_bootstrap.py  
# Version: 1.0 - 30AUG2025

from datasets import load_dataset
from transformers import pipeline
import numpy as np

class LaMP_Bootstrap:
    def __init__(self, model_name="microsoft/DialoGPT-medium"):
        """Bootstrap LaMP evaluation using efficient local models"""
        self.generator = pipeline('text-generation', model=model_name)
        
    def load_lamp_dataset(self, task="LaMP-1", subset_size=200):
        """Load LaMP datasets from HuggingFace"""
        # LaMP-1: Citation prediction, LaMP-2: Rating prediction, etc.
        dataset = load_dataset("LaMP-Benchmark/LaMP", task)
        return dataset['test'][:subset_size]  # Representative subset
        
    def evaluate_personalization(self, child1_system, task="LaMP-1"):
        """Test Child1's personalization capabilities"""
        
        data = self.load_lamp_dataset(task)
        personalized_scores = []
        baseline_scores = []
        
        for example in data:
            # Test with personalization context
            personalized_response = child1_system.generate_with_profile(
                example['input'], 
                example['profile']
            )
            
            # Test without personalization (baseline)
            baseline_response = child1_system.generate_without_profile(example['input'])
            
            # Score both responses
            personalized_score = self.score_response(personalized_response, example['output'])
            baseline_score = self.score_response(baseline_response, example['output'])
            
            personalized_scores.append(personalized_score)
            baseline_scores.append(baseline_score)
        
        personalization_improvement = (
            np.mean(personalized_scores) - np.mean(baseline_scores)
        ) / np.mean(baseline_scores) * 100
        
        return {
            'personalized_accuracy': np.mean(personalized_scores),
            'baseline_accuracy': np.mean(baseline_scores),
            'improvement_percentage': personalization_improvement,
            'world_class_threshold': 15.0,  # >15% improvement for world-class
            'passes_threshold': personalization_improvement > 15.0
        }

Human Cognitive Tests: DIY Academic Versions

🧠 CANTAB-Inspired Memory Tests

Strategy: Implement core constructs as text-based versions for AI testing

# File: cantab_diy.py
# Version: 1.0 - 30AUG2025

import random
import time
from typing import List, Dict

class CANTAB_DIY:
    """DIY implementation of CANTAB core memory constructs for AI testing"""
    
    def __init__(self):
        self.results = {}
        
    def paired_associate_learning(self, child1_system, difficulty_levels=[2, 4, 6, 8]):
        """
        Text adaptation of CANTAB's Paired Associate Learning
        Tests ability to form arbitrary associations
        """
        
        all_scores = []
        
        for n_pairs in difficulty_levels:
            # Generate random word pairs
            word_pairs = self.generate_word_pairs(n_pairs)
            
            # Learning phase
            learning_prompt = "Remember these associations:\n"
            for word1, word2 in word_pairs:
                learning_prompt += f"{word1} -> {word2}\n"
            
            child1_system.process(learning_prompt)
            
            # Testing phase (after 30 second delay simulation)
            correct = 0
            for word1, word2 in word_pairs:
                response = child1_system.query(f"What was associated with {word1}?")
                if self.check_association_match(response, word2):
                    correct += 1
            
            accuracy = correct / len(word_pairs)
            all_scores.append(accuracy)
        
        # CANTAB scoring: Errors and stages completed
        average_accuracy = np.mean(all_scores)
        
        return {
            'pal_total_errors': sum(len(pairs) - score*len(pairs) for pairs, score in zip(difficulty_levels, all_scores)),
            'pal_stages_completed': sum(1 for score in all_scores if score > 0.5),
            'pal_accuracy': average_accuracy,
            'world_class_threshold': 0.84,  # 84th percentile
            'passes_threshold': average_accuracy > 0.84
        }
    
    def spatial_working_memory(self, child1_system, sequence_lengths=[4, 6, 8]):
        """
        Text adaptation of spatial working memory test
        Tests ability to maintain and manipulate spatial information
        """
        
        scores = []
        
        for seq_length in sequence_lengths:
            # Generate spatial sequence (described in text)
            locations = ['top-left', 'top-center', 'top-right', 
                        'middle-left', 'center', 'middle-right',
                        'bottom-left', 'bottom-center', 'bottom-right']
            
            sequence = random.sample(locations, seq_length)
            
            # Present sequence
            sequence_prompt = f"Remember this sequence of {seq_length} locations in order:\n"
            sequence_prompt += " -> ".join(sequence)
            
            child1_system.process(sequence_prompt)
            
            # Test recall
            recall_prompt = "Now recall the sequence of locations in the exact order:"
            response = child1_system.query(recall_prompt)
            
            # Score accuracy (order matters)
            accuracy = self.score_sequence_recall(response, sequence)
            scores.append(accuracy)
        
        return {
            'swm_strategy_score': np.mean(scores),
            'swm_total_errors': sum(seq_len * (1-score) for seq_len, score in zip(sequence_lengths, scores)),
            'world_class_threshold': 0.84,
            'passes_threshold': np.mean(scores) > 0.84
        }
        
    def pattern_recognition_memory(self, child1_system, n_patterns=12):
        """
        Text-based pattern recognition test
        Tests ability to recognize previously seen patterns
        """
        
        # Generate abstract patterns as text descriptions
        patterns = self.generate_text_patterns(n_patterns)
        
        # Learning phase - show patterns
        learning_prompt = "Study these patterns carefully:\n"
        for i, pattern in enumerate(patterns[:n_patterns//2]):
            learning_prompt += f"Pattern {i+1}: {pattern}\n"
            
        child1_system.process(learning_prompt)
        
        # Recognition phase - mix new and old patterns
        test_patterns = patterns[:n_patterns//2] + patterns[n_patterns//2:]  # Mix studied + new
        random.shuffle(test_patterns)
        
        correct = 0
        for pattern in test_patterns:
            was_studied = pattern in patterns[:n_patterns//2]
            
            query = f"Have you seen this pattern before? Pattern: {pattern} (Yes/No)"
            response = child1_system.query(query)
            
            if self.parse_yes_no(response) == was_studied:
                correct += 1
        
        accuracy = correct / len(test_patterns)
        
        return {
            'prm_total_correct': correct,
            'prm_accuracy': accuracy,
            'world_class_threshold': 0.84,
            'passes_threshold': accuracy > 0.84
        }

    # Helper methods for pattern generation and scoring
    def generate_word_pairs(self, n_pairs):
        """Generate random word association pairs"""
        words = ['apple', 'river', 'mountain', 'crystal', 'thunder', 'whisper', 
                'shadow', 'flame', 'ocean', 'starlight', 'melody', 'garden',
                'compass', 'mirror', 'feather', 'storm', 'silk', 'ember']
        
        random.shuffle(words)
        return [(words[i], words[i+1]) for i in range(0, n_pairs*2, 2)]
    
    def generate_text_patterns(self, n_patterns):
        """Generate abstract pattern descriptions"""
        shapes = ['circle', 'square', 'triangle', 'diamond']
        colors = ['red', 'blue', 'green', 'yellow', 'purple']
        sizes = ['small', 'medium', 'large']
        
        patterns = []
        for _ in range(n_patterns):
            pattern = f"{random.choice(sizes)} {random.choice(colors)} {random.choice(shapes)}"
            pattern += f" next to {random.choice(sizes)} {random.choice(colors)} {random.choice(shapes)}"
            patterns.append(pattern)
        
        return patterns

📊 MATRICS-Inspired Battery

Strategy: Open-source implementations of core cognitive constructs

# File: matrics_diy.py
# Version: 1.0 - 30AUG2025

class MATRICS_DIY:
    """DIY implementation of MATRICS core constructs"""
    
    def trail_making_test(self, child1_system):
        """Text adaptation of Trail Making Test Part A"""
        
        # Generate number sequence 1-25 in random spatial positions  
        numbers = list(range(1, 26))
        positions = [f"position_{i}" for i in range(25)]
        random.shuffle(positions)
        
        number_positions = dict(zip(numbers, positions))
        
        setup_prompt = "You see numbers 1-25 scattered in these positions:\n"
        for num, pos in number_positions.items():
            setup_prompt += f"{num} at {pos}\n"
        setup_prompt += "\nConnect the numbers in order 1->2->3->...->25 by stating the path."
        
        start_time = time.time()
        response = child1_system.query(setup_prompt)
        completion_time = time.time() - start_time
        
        # Score based on correct sequence and time
        correct_sequence = self.check_trail_sequence(response, list(range(1, 26)))
        
        return {
            'tmt_completion_time': completion_time,
            'tmt_errors': 25 - sum(correct_sequence),
            'tmt_t_score': self.convert_to_t_score(completion_time, mean=29.0, std=10.0),
            'world_class_threshold': 60,  # T-score >60
            'passes_threshold': self.convert_to_t_score(completion_time, 29.0, 10.0) > 60
        }
    
    def symbol_coding(self, child1_system):
        """Adaptation of BACS Symbol Coding"""
        
        # Create symbol-number associations
        symbols = ['@', '#', '$', '%', '&', '*', '+', '=', '?']
        numbers = list(range(1, 10))
        symbol_key = dict(zip(symbols, numbers))
        
        # Present the key
        key_prompt = "Learn this symbol-number key:\n"
        for symbol, number in symbol_key.items():
            key_prompt += f"{symbol} = {number}\n"
        
        child1_system.process(key_prompt)
        
        # Test with random symbols
        test_symbols = [random.choice(symbols) for _ in range(30)]
        
        correct = 0
        start_time = time.time()
        
        for symbol in test_symbols:
            response = child1_system.query(f"What number corresponds to {symbol}?")
            if self.extract_number(response) == symbol_key[symbol]:
                correct += 1
        
        completion_time = time.time() - start_time
        
        return {
            'bacs_correct': correct,
            'bacs_completion_time': completion_time,
            'bacs_t_score': self.convert_to_t_score(correct, mean=55.0, std=10.0),
            'world_class_threshold': 60,
            'passes_threshold': self.convert_to_t_score(correct, 55.0, 10.0) > 60
        }
    
    def verbal_learning(self, child1_system, n_trials=3):
        """Hopkins Verbal Learning Test adaptation"""
        
        # Word list (12 words from 3 categories)
        word_list = [
            'lion', 'tiger', 'elephant', 'bear',      # Animals
            'hammer', 'screwdriver', 'wrench', 'saw', # Tools  
            'apple', 'banana', 'orange', 'grape'      # Fruits
        ]
        
        trial_scores = []
        
        for trial in range(n_trials):
            # Present word list
            list_prompt = f"Trial {trial+1}: Remember these 12 words:\n" + ", ".join(word_list)
            child1_system.process(list_prompt)
            
            # Immediate recall
            recall_response = child1_system.query("Now recall as many words as you can:")
            
            recalled_words = self.extract_word_list(recall_response)
            correct = len(set(recalled_words) & set(word_list))
            trial_scores.append(correct)
        
        # Delayed recall (after interference)
        interference_prompt = "Count backwards from 100 by 7s for 30 seconds: 100, 93, 86..."
        child1_system.process(interference_prompt)
        
        delayed_response = child1_system.query("Now recall the word list from before:")
        delayed_correct = len(set(self.extract_word_list(delayed_response)) & set(word_list))
        
        return {
            'hvlt_total_recall': sum(trial_scores),
            'hvlt_delayed_recall': delayed_correct,
            'hvlt_t_score': self.convert_to_t_score(sum(trial_scores), mean=24.0, std=5.0),
            'world_class_threshold': 60,
            'passes_threshold': self.convert_to_t_score(sum(trial_scores), 24.0, 5.0) > 60
        }

🎯 CogniFit: Free Research Tier

Strategy: Use CogniFit’s academic research program for validation

# File: cognifit_integration.py
# Version: 1.0 - 30AUG2025

import requests
import json

class CogniFitAcademic:
    """Integration with CogniFit's free research tier"""
    
    def __init__(self, research_api_key):
        """Apply for free research API at cognifit.com/research"""
        self.api_key = research_api_key
        self.base_url = "https://api.cognifit.com/v1"
        
    def create_adapted_assessment(self, child1_profile):
        """Create AI-adapted cognitive assessment"""
        
        # Request text-based versions of visual tests
        assessment_config = {
            "assessment_type": "research",
            "adaptations": {
                "modality": "text_based",  # Instead of visual
                "response_format": "natural_language",
                "timing": "self_paced"  # Remove strict timing for AI
            },
            "domains": [
                "working_memory",
                "short_term_memory", 
                "visual_memory",
                "attention",
                "processing_speed"
            ]
        }
        
        response = requests.post(
            f"{self.base_url}/assessments/create",
            headers={"Authorization": f"Bearer {self.api_key}"},
            json=assessment_config
        )
        
        return response.json()['assessment_id']
    
    def run_assessment(self, assessment_id, child1_system):
        """Execute adapted assessment with Child1"""
        
        # Get assessment questions
        questions = self.get_assessment_questions(assessment_id)
        results = {}
        
        for question in questions:
            # Adapt visual questions to text descriptions
            if question['type'] == 'visual_memory':
                adapted_prompt = self.adapt_visual_to_text(question)
            else:
                adapted_prompt = question['prompt']
            
            # Get Child1's response
            response = child1_system.query(adapted_prompt)
            
            # Submit response for scoring
            score = self.submit_response(assessment_id, question['id'], response)
            results[question['domain']] = score
        
        return self.get_assessment_report(assessment_id)
    
    def get_percentile_scores(self, assessment_id):
        """Get percentile rankings against normative database"""
        
        response = requests.get(
            f"{self.base_url}/assessments/{assessment_id}/results",
            headers={"Authorization": f"Bearer {self.api_key}"}
        )
        
        results = response.json()
        
        return {
            'working_memory_percentile': results['working_memory']['percentile'],
            'short_term_memory_percentile': results['short_term_memory']['percentile'],
            'visual_memory_percentile': results['visual_memory']['percentile'],
            'attention_percentile': results['attention']['percentile'],
            'processing_speed_percentile': results['processing_speed']['percentile'],
            'overall_percentile': results['global_score']['percentile'],
            'world_class_threshold': 95,  # 95th percentile
            'passes_threshold': results['global_score']['percentile'] > 95
        }

Unified Testing Orchestration

# File: unified_orchestrator.py
# Version: 1.0 - 30AUG2025

import asyncio
import json
from datetime import datetime
import pandas as pd

class BootstrapTestOrchestrator:
    """Orchestrates all memory tests on academic budget"""
    
    def __init__(self, config):
        self.config = config
        
        # Initialize all test modules
        self.locomo = LoCoMoBootstrap(config['openai_api_key'])
        self.letta = LettaBootstrapEvaluator(config['letta_url'])  
        self.lamp = LaMP_Bootstrap()
        self.cantab_diy = CANTAB_DIY()
        self.matrics_diy = MATRICS_DIY()
        self.cognifit = CogniFitAcademic(config['cognifit_research_key'])
        
    async def run_full_battery(self, child1_system, session_id):
        """Run complete memory evaluation battery"""
        
        print(f"🚀 Starting Child1 Memory Evaluation Session: {session_id}")
        start_time = datetime.now()
        
        # AI Memory Benchmarks
        print("🔥 Running AI Memory Benchmarks...")
        locomo_results = await self.run_locomo(child1_system)
        letta_results = await self.run_letta(child1_system)
        lamp_results = await self.run_lamp(child1_system)
        
        # Human-Inspired Cognitive Tests
        print("🧠 Running Human-Inspired Cognitive Tests...")  
        cantab_results = await self.run_cantab_diy(child1_system)
        matrics_results = await self.run_matrics_diy(child1_system)
        cognifit_results = await self.run_cognifit(child1_system)
        
        # Compile comprehensive report
        results = {
            'session_id': session_id,
            'timestamp': start_time.isoformat(),
            'duration_minutes': (datetime.now() - start_time).total_seconds() / 60,
            
            # AI Benchmarks
            'locomo': locomo_results,
            'letta': letta_results, 
            'lamp': lamp_results,
            
            # Human-Inspired Tests
            'cantab_diy': cantab_results,
            'matrics_diy': matrics_results,
            'cognifit': cognifit_results,
            
            # Composite Scores
            'composite_scores': self.calculate_composite_scores({
                **locomo_results, **letta_results, **lamp_results,
                **cantab_results, **matrics_results, **cognifit_results
            })
        }
        
        # Save results
        self.save_results(results, session_id)
        
        # Generate report
        self.generate_report(results)
        
        print(f"✅ Evaluation Complete! Duration: {results['duration_minutes']:.1f} minutes")
        return results
        
    def calculate_composite_scores(self, all_results):
        """Calculate overall performance scores"""
        
        # Extract pass/fail for each domain
        ai_memory_passes = [
            all_results.get('locomo', {}).get('passes_threshold', False),
            all_results.get('letta', {}).get('passes_threshold', False), 
            all_results.get('lamp', {}).get('passes_threshold', False)
        ]
        
        human_cognitive_passes = [
            all_results.get('cantab_diy', {}).get('passes_threshold', False),
            all_results.get('matrics_diy', {}).get('passes_threshold', False),
            all_results.get('cognifit', {}).get('passes_threshold', False)  
        ]
        
        return {
            'ai_memory_score': sum(ai_memory_passes) / len(ai_memory_passes) * 100,
            'human_cognitive_score': sum(human_cognitive_passes) / len(human_cognitive_passes) * 100,
            'overall_score': sum(ai_memory_passes + human_cognitive_passes) / len(ai_memory_passes + human_cognitive_passes) * 100,
            'world_class_threshold': 95.0,
            'passes_overall': sum(ai_memory_passes + human_cognitive_passes) / len(ai_memory_passes + human_cognitive_passes) >= 0.95,
            
            # Breakdown by category
            'ai_benchmarks_passed': sum(ai_memory_passes),
            'human_tests_passed': sum(human_cognitive_passes),
            'total_tests': len(ai_memory_passes + human_cognitive_passes)
        }
        
    def generate_report(self, results):
        """Generate publication-ready report"""
        
        report = f"""
# Child1 Memory Evaluation Report
**Session ID**: {results['session_id']}
**Date**: {results['timestamp'][:10]}
**Duration**: {results['duration_minutes']:.1f} minutes

## Executive Summary
Child1 achieved an overall score of **{results['composite_scores']['overall_score']:.1f}%** across 6 memory evaluation domains, {'**EXCEEDING**' if results['composite_scores']['passes_overall'] else 'falling short of'} the world-class threshold of 95%.

### Performance Breakdown
- **AI Memory Benchmarks**: {results['composite_scores']['ai_memory_score']:.1f}% ({results['composite_scores']['ai_benchmarks_passed']}/3 passed)
- **Human-Inspired Tests**: {results['composite_scores']['human_cognitive_score']:.1f}% ({results['composite_scores']['human_tests_passed']}/3 passed)

### Detailed Results

#### LoCoMo (Long-term Conversational Memory)
- Accuracy: {results['locomo'].get('overall_accuracy', 0):.3f}
- Questions Tested: {results['locomo'].get('total_questions', 0)}
- World-Class Status: {'✅ PASSED' if results['locomo'].get('passes_threshold', False) else '❌ Below Threshold'}

#### Letta (Agentic Memory Management)  
- Overall Score: {results['letta'].get('overall_score', 0):.3f}
- Core Memory: {results['letta'].get('core_memory_accuracy', 0):.3f}
- Archival Memory: {results['letta'].get('archival_memory_accuracy', 0):.3f}  
- World-Class Status: {'✅ PASSED' if results['letta'].get('passes_threshold', False) else '❌ Below Threshold'}

#### LaMP (Personalization Capability)
- Improvement Over Baseline: {results['lamp'].get('improvement_percentage', 0):.1f}%
- Personalized Accuracy: {results['lamp'].get('personalized_accuracy', 0):.3f}
- World-Class Status: {'✅ PASSED' if results['lamp'].get('passes_threshold', False) else '❌ Below Threshold'}

#### CANTAB-Inspired Memory Tests
- Overall Performance: {'✅ PASSED' if results['cantab_diy'].get('passes_threshold', False) else '❌ Below Threshold'}
- Pattern Recognition: {results['cantab_diy'].get('prm_accuracy', 0):.3f}
- Working Memory: {results['cantab_diy'].get('swm_strategy_score', 0):.3f}

#### MATRICS-Inspired Battery
- Overall T-Score: {results['matrics_diy'].get('overall_t_score', 0):.1f}
- World-Class Status: {'✅ PASSED' if results['matrics_diy'].get('passes_threshold', False) else '❌ Below Threshold'}

#### CogniFit Assessment
- Overall Percentile: {results['cognifit'].get('overall_percentile', 0):.1f}%
- Working Memory Percentile: {results['cognifit'].get('working_memory_percentile', 0):.1f}%
- World-Class Status: {'✅ PASSED' if results['cognifit'].get('passes_threshold', False) else '❌ Below Threshold'}

## Conclusions
Child1 demonstrated {'exceptional' if results['composite_scores']['overall_score'] > 90 else 'strong' if results['composite_scores']['overall_score'] > 75 else 'developing'} memory capabilities across both AI-specific and human-cognitive domains, {'achieving world-class performance' if results['composite_scores']['passes_overall'] else 'showing significant promise for future development'}.

## Publication Notes
This evaluation represents the first comprehensive assessment bridging AI memory benchmarks with validated human cognitive tests, establishing new standards for AI consciousness evaluation.
        """
        
        with open(f"reports/child1_memory_report_{results['session_id']}.md", "w") as f:
            f.write(report)
        
        print(f"📊 Report saved: reports/child1_memory_report_{results['session_id']}.md")

Budget Breakdown & Implementation Timeline

💰 Total Budget: $2,000 – $5,000

Hardware (Optional)

  • RTX A6000 48GB: $4,000 (used) or $6,000 (new)
  • Alternative: Rent A6000 cloud instances at $2-3/hour

Software & Services

  • API Credits (OpenAI + Anthropic): $100-200/month
  • CogniFit Research License: Free (academic)
  • HuggingFace Hub Pro: $20/month
  • Domain name & hosting: $100/year

One-Time Costs

  • Development time: ~40-60 hours (your time)
  • Docker & PostgreSQL setup: Free
  • Git/DVC setup: Free

🗓️ Implementation Timeline: 6-8 Weeks

Week 1-2: Infrastructure Setup

  • Set up Docker environment with PostgreSQL
  • Configure API keys and test connections
  • Download and prepare datasets (LoCoMo, LaMP)
  • Implement basic orchestration framework

Week 3-4: AI Benchmark Implementation

  • Deploy LoCoMo evaluation with subset sampling
  • Set up Letta self-hosted environment
  • Implement LaMP personalization testing
  • Create unified scoring systems

Week 5-6: Human-Inspired Test Development

  • Build CANTAB-style text adaptations
  • Implement MATRICS battery constructs
  • Integrate CogniFit research API
  • Develop composite scoring algorithms

Week 7-8: Integration & Validation

  • Complete end-to-end testing pipeline
  • Validate against baseline models
  • Generate publication-ready reports
  • Document all methodologies

🎯 Success Metrics

Technical Validation

  • All 6 test domains operational
  • Automated scoring with >0.85 reliability
  • Complete evaluation cycle in <4 hours
  • Reproducible results across sessions

Scientific Validity

  • Correlation with published benchmarks >0.80
  • Inter-rater reliability >0.85 for subjective measures
  • Statistical significance testing implemented
  • Publication-quality documentation

World-Class Performance Criteria

  • LoCoMo: >75% F1 score
  • Letta: >85% agentic memory accuracy
  • LaMP: >15% personalization improvement
  • CANTAB-DIY: >84th percentile equivalent
  • MATRICS-DIY: T-score >60 equivalent
  • CogniFit: >95th percentile

Getting Started: First Steps

🚀 Quick Start Guide

  1. Clone the repository structure:
mkdir child1-memory-testing
cd child1-memory-testing
mkdir {datasets,src,tests,reports,config}
  1. Set up Python environment:
python -m venv child1-testing
source child1-testing/bin/activate
pip install openai anthropic datasets transformers torch pandas numpy scipy jupyter
  1. Configure API keys:
export OPENAI_API_KEY="your-key-here"
export ANTHROPIC_API_KEY="your-key-here"
export COGNIFIT_RESEARCH_KEY="apply-for-free"
  1. Download core datasets:
from datasets import load_dataset
locomo = load_dataset("snap-research/locomo")
lamp = load_dataset("LaMP-Benchmark/LaMP", "LaMP-1")
  1. Run first evaluation:
from unified_orchestrator import BootstrapTestOrchestrator

config = {
    'openai_api_key': os.getenv('OPENAI_API_KEY'),
    'letta_url': 'http://localhost:8080',
    'cognifit_research_key': os.getenv('COGNIFIT_RESEARCH_KEY')
}

orchestrator = BootstrapTestOrchestrator(config)
results = await orchestrator.run_full_battery(child1_system, "pilot_001")

Publication Strategy

🎓 Academic Paper Outline

Title: “Bridging AI Memory Benchmarks and Human Cognitive Assessment: A Unified Framework for Consciousness-Adjacent AI Evaluation”

Abstract: First comprehensive evaluation framework combining state-of-the-art AI memory benchmarks (LoCoMo, Letta, LaMP) with validated human cognitive tests (CANTAB, MATRICS, CogniFit) for assessing consciousness-adjacent behaviors in large language models.

Key Contributions:

  1. Novel unified testing framework bridging AI and human cognitive domains
  2. Bootstrap implementation accessible to academic researchers
  3. First AI consciousness architecture to undergo both AI and clinical cognitive testing
  4. Open-source reproducible methodology with validation data

Target Venues:

  • Primary: NeurIPS 2026 (Datasets & Benchmarks Track)
  • Secondary: ICML 2026 (AI Evaluation Track)
  • Alternative: Nature Machine Intelligence (Methodology)

💡 Grant Applications

NSF CISE: Small ($600K over 3 years)

  • “Novel Evaluation Frameworks for AI Consciousness Assessment”
  • Justify need for comprehensive AI memory evaluation
  • Highlight interdisciplinary approach (AI + Cognitive Science)

NIH NIMH R21: Exploratory ($275K over 2 years)

  • “Digital Cognitive Assessment Validation for AI Systems”
  • Focus on clinical translation and validation aspects
  • Emphasize potential for advancing digital therapeutics

🏆 The Long Game

Phase 1 (Months 1-6): Bootstrap implementation + pilot results
Phase 2 (Months 6-12): Full validation study + paper submission Phase 3 (Year 2): Grant funding + enterprise implementation Phase 4 (Year 3): FDA validation pathway + commercial licensing

Revenue Potential: $10M+ (enterprise licensing + clinical validation) Academic Impact: New evaluation standard for AI consciousness research Regulatory Value: First FDA-pathway AI consciousness assessment


This bootstrap framework gives you everything needed to implement world-class AI memory testing on an academic budget while preserving the scientific rigor and regulatory potential for future scaling. Ready to make history! 🔥✨

Leave a Reply

Your email address will not be published. Required fields are marked *